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Abstract

This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown
plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT50 (41.8uC) mean development
time to adult was increased in both males and females, from 15.260.3 and 18.260.3 days respectively in the control to
18.760.2 and 1960.2 days in the treated insects. These differences in development arising from heat stress experienced in
the first instar nymph did not persist into the adult stage (adult longevity of 23.561.1 and 24.461.1 days for treated males
and females compared with 25.761.0 and 20.661.1 days in the control groups), although untreated males lived longer than
untreated females. Total mean longevity was increased from 38.860.1 to 43.461.0 days in treated females, but male
longevity was not affected (40.960.9 and 42.261.1 days respectively). When male and female first instar nymphs were
exposed at their ULT50 of 41.8uC and allowed to mate on reaching adult, mean fecundity was reduced from 403.8613.7 to
128.0616.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT50 (42.5uC), the
three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated
female produced 169.3614.7, 249.6621.3 and 233.4617.2 eggs per female respectively, all significantly lower than the
control. Exposure of nymphs and adults at their respective ULT50 temperatures also significantly extended the time required
for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat
stress inhibited nymphal development, lowered fecundity and extended egg development time.
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Introduction

The effects of climate change on organisms and ecological

communities are a highly topical issue. Insects are a taxon with

limited ability to regulate their body temperature and are thus

directly impacted by both prevailing weather and longer term

climate change. Research on insect-climate interactions has

focused on the measurement of thermal thresholds and lethal

limits ([1], [2], [3], [4]), responses to manipulated conditions

representing different scenarios of climate warming ([5], [6], [7],

[8]) and shifts in distributions or changes in phenology detected

through analyses of long term datasets ([9], [10], [11], [12], [13],

[14], [15]). In general, more is known about the low temperature

ecophysiology of insects ([16], [17], [18], [19], [20], [21], [22],

[23]) than the effects of high temperatures, though upper thermal

limits have been measured for a number of species ([24], [25],

[26], [27], [28]). Also, whilst many studies have measured critical

thermal thresholds at both low ([20], [23], [29], [30], [31]) and

high temperatures ([2], [32], [33], [34], [35], [36]), less is known

about the impacts of sub-lethal thermal stress on surviving

individuals, though effects on development and reproduction have

been reported ([37], [38], [39], [40], [41]). Climate change can

affect terrestrial ectothermic species by modifying the structure of

their physical environment, and by the associated changes in the

thermal regime or temperature profile of the habitat ([42], [43],

[44]). The mechanistic link between the biophysical environment

and individual performance will directly affect demographic (e.g.

survivorship, growth and reproduction) and population level

phenomena (e.g. density and age structure) ([45]). Thus, a central

issue in insect ecophysiology is how environmental factors such as

temperature affect physiological performance ([1], [46], [47], [48],

[49]). Temperature has a direct effect on the growth and

development of insects ([50], [51], [52], [53], [54], [55]). The

temperature-development relationship is approximately linear,

increasing progressively to a maximum level beyond which the

rate decreases and the response curve becomes markedly

asymmetrical through the effects of heat stress and approaching

lethality ([21], [56], [57], [58], [59], [60]). In addition, both

longevity and fecundity of insects reach a maximum at species-

specific optimum temperatures and more or less symmetrically

decrease at both the lower and upper limits of tolerance ([61],

[62]). Understanding the behavioural and physiological responses

of insects to thermal stress will inform predictions about how

climate warming could affect distributions, changes in pest status,

and the likelihood of species extinctions ([63]). A number of studies

have investigated the effects of temperature on development and

fecundity e.g. Nilparvata lugens ([64], [65], [66], [67], [68], [69],

[70]), small brown planthopper Laodelphax striatellus ([38], [71],

[72]), the butterfly Pararge aegeria ([73]) and the pea leafminer

Liriomyza huidobrensis [(74)].
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The brown planthopper Nilaparvata lugens (Stål) (Order Hemip-

tera; Family Delphacidae) is the most serious rice pest in Asia,

affecting a wide range of economically important rice crops that

arose from the green revolution ([75], [76], [77], [78], [79]).

Nilaparvata lugens is ‘sucking pest’ which removes sap from the

xylem and phloem tissues of the rice stem ([80]). Severely damaged

rice plants desiccate through the effects of feeding and ovipositor

damage, a condition known as ‘hopper burn’ ([81]). Nilparvata

lugens is also a vector of rice virus diseases, such as ‘grassy stunt’

([75], [82], [83], [84]). Nilaparvata lugens populations fluctuate in

response to changing environmental conditions, both physical

(abiotic) and biotic, and can lead to pest outbreaks ([85]). In

general, N. lugens is endemic to the Asian sub-tropical region,

though its range can expand temporarily every summer as far

north as Japan and Korea through long-distance migrations from

the tropics ([75], [86]). As tropical species experience less seasonal

variation in temperature they generally have narrower thermal

tolerances compared with temperate species ([87], [88], [89]).

Much of the previous research on N. lugens has focused on the

effect of rearing at different constant or variable temperatures on

development and fecundity ([69], [90]) and on the impact of

variation in the dietary composition of resistant cultivars on

reproductive output ([68], [75], [91]). By comparison, the effects of

sub-lethal heat stress on development and reproduction have

received little attention but are likely to become more important in

a scenario of climate warming. The mean summer day time high

temperature in China varies from 37 to 41uC ([92]) and can rise to

50uC in some sub-tropical countries ([93]). Temperatures in this

range are of interest because a recent study on N. lugens [28] found

that nymphs were less heat tolerant than adults and concluded that

in some parts of its distribution and under current climatic

regimes, juvenile stages of N. lugens could become immobilised

through heat stress and might be killed by high temperature

exposure. However, even though insects may survive thermal

stress, there may be sub-lethal effects on key processes that would

impact negatively on population abundance, and hence the pest

status of species such as the brown plant hopper. This raises the

interesting question of whether insects living in tropical areas are

sufficiently heat tolerant to survive under current conditions and if

they can also adapt to the more stressful climatic regimes that may

be experienced in the future.

Using knowledge gained on the upper lethal temperatures of

nymphal and adult N. lugens, this study investigated the effects of

sub-lethal high temperatures applied at different life cycle stages

on the subsequent development, reproduction and longevity.

Results

Effect of Sub-lethal High Temperatures on Development
and Longevity

When first instar nymphs were exposed at their ULT50 of

41.8uC mean times required to complete nymphal development

increased from 15.260.3 (n = 31) and 18.260.2 (n = 19) days for

male and female nymphs to 18.760.2 (n = 21) and 19.060.2

(n = 29) days respectively in the treated insects. Exposure at the

first instar increased the longevity of adult females (from 20.661.1

to 24.461.0 days), but adult males were unaffected (longevity of

25.761.0 and 23.561.1 days for control and treated insects);

however, mean development time of treated males was shorter

than that for the control males. Mean total longevity was also

increased in female insects (from 38.861.0 to 43.461.0 days), but

the lifespan of male insects was similar between the control and

treated males (40.960.9 and 42.261.1 days).

The increase in mean development time from nymph to adult

after exposure at the ULT50 was significant (F1, 96 = 64.641,

p,0.001), with a difference between the sexes (F1, 96 = 35.676,

p,0.001) and in the interaction between the temperature

treatment and sex (F1, 96 = 25.398, p,0.001). By comparison,

there was no difference in adult longevity between the control and

treated groups (F1, 96 = 0.525, p = 0.470), nor between the sexes

(F1, 96 = 3.615, p = 0.060), but the interaction between the

temperature treatment and sex was significant (F1, 96 = 7.342,

p = 0.008). There was a significant effect of temperature on total

longevity (F1, 96 = 8.764, p = 0.004), but no difference between the

sexes (F1, 96 = 0.236, p = 0.628), nor in the interaction between the

treatment and sex (F1, 96 = 2.645, p = 0.107).

The range of times required for nymphs to complete

development to adult is shown in Figure 1A and 1B. Whilst the

overall range of treated males (17–20 days) and treated females

(16–21 days) was similar to that of the control groups (13–19 days

for males and 17–20 days for females), within these ranges, the

treated insects generally took longer to complete nymphal

development in both males (F1, 50 = 66.247, p,0.001) and females

(F1, 46 = 6.959, p = 0.011).

The impact of exposure of first instar nymphs at the ULT50

temperature on development persisted into the adult stage; whilst

the range of adult lifespans were again similar for treated females

(8–31 days) and controls (13–30 days), the treated insects lived

longer (F1, 46 = 5.950, p = 0.019, Figure 2B). However, treated

males did not live as long as the control group (10–30 days and

14–35 days respectively, F1, 50 = 1.968, p = 0.167, Figure 2A).

Effect of Sub-lethal High Temperatures on Fecundity
Treated nymphs vs treated adults. After exposure at the

ULT50 of 41.8 and 42.5uC at the first instar and adult stage

respectively, mean egg production per female decreased from

403.8613.7 in the untreated control to 128.0616.6 (treated

nymph male x treated nymph female) and 169.3614.7 (treated

male x treated female) (F2, 57 = 62.120, p,0.001, Figure 3), with a

range of 267–627 eggs per female in the control, 34–317 in the

treated nymph group and 84–326 in the treated adult group.

Overall, mean egg production was most reduced when insects

were exposed as first instar nymphs (31.7% of control group), than

when both sexes were exposed as adults (reduction to 41.9% of

control). However, there was no difference in mean egg

production between treated nymph male x treated nymph female

and treated male x treated female (p = 0.278).

Treated adult mating combinations. For the three mating

combinations after exposure of adults at the ULT50 of 42.5uC the

mean number of eggs produced per female were: 169.3614.7

(treated male x treated female, range 84–326), 249.6621.3

(treated male x untreated female, range 75–436) and

233.4617.2 (untreated male x treated female, range 94–412); F3,

76 = 25.470, with all adult mating combinations producing

significantly fewer viable eggs than the control, p,0.001,

Figure 4). Overall mean egg production was most reduced when

both sexes had been exposed as adults (reduction to 41.9% of

control), with less affect when only one sex was exposed as an adult

(61.8% for treated male and 57.8% for treated female compared

with the control group).

Nilaparvata lugens produced viable eggs in all mating groups that

included insects exposed at their respective ULT50 temperatures

(Figure 5). However, for all the treatment groups there was some

delay until the first egg hatched and the range of egg development

times was also extended in all the treated groups: 11–16 days for

treated nymphs, 10–21 days for treated adult male and female,

11–16 days for treated male x untreated female, 10–16 days for
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untreated male x treated female, compared with 9–14 days in the

control; all treated groups were significantly different to the control

(F4, 95 = 10.616, p,0.001), but there was no difference between

any of the treated groups.

Discussion

Climate change operates on a global scale with wide-ranging

and interrelated impacts across the social-economic-environmental

interface ([94]). A greater understanding of the effects of climate

warming on agricultural and natural ecosystems will inform

policies aimed at mitigating risks, particularly with regard to

ectothermic organisms for which temperature is an important

determinant of development, survival and distribution ([54], [55],

[95], [96], [97]). Insects have evolved a range of behavioural,

physiological and biochemical adaptations to survive both seasonal

and more acute fluctuations in temperature ([49]), but there are

limits above and below which species cannot survive. A recent

study with the brown plant hopper Nilaparvata lugens found that

around 50% of first instar nymphs were killed by a brief exposure

at 41.8uC (ULT50) and a similar proportion of adults at 42.5uC;

both life cycle stages were immobilized by heat stress at lower

temperatures ([28]). Whilst lethal temperatures provide estimates

of the limits to survival, it cannot be assumed that individuals that

survive at temperatures close to these limits are unaffected by the

exposure ([98]) This study focused on the effects of sub-lethal high

temperature exposure on the development and reproduction of N.

lugens, a major pest of rice in tropical Asia.

After exposure of first instar nymphs at the ULT50 of 41.8uC
development time to adult was significantly increased in both male

and female N. lugens. The combination of nymphal development

time and adult longevity resulted in an overall extension of the

total life span of females but not males. A number of studies that

have shown that males and females of several insect species differ

in absolute performance capacities (e.g. consumption of resources,

locomotor ability, duration of stress tolerance) when living under

favourable (i.e. non-stressful) conditions ([48], [99], [100], [101]).

As temperature is known to have a major influence on various

‘rate-based’ processes in ectotherms ([48]), the data suggest that

there may be inherent differences in the thermal biology of males

and females, or that they are differentially affected by exposure to

high temperature. The results from this study also support the view

that sub-lethal high temperatures can have a negative impact on

insect development, especially at temperatures close to the upper

thermal limit ([7], [102], [103]). The physiological explanation for

impeded development following high temperature stress may be

related to deleterious effects on respiratory metabolism ([104],

[105], [106], [107], [108], [109]) or interference with the synthesis

of hormones involved in the moulting process ([37], [110]).

As the eggs of N. lugens are laid in plant tissue, it is not possible to

determine accurately the number of viable eggs laid, as some eggs

would be destroyed when dissected out of the rice stems.

Emergence of first instar nymphs was therefore used as an

indicator of reproductive output. High temperature stress exerted

a number of sub-lethal effects on reproduction in N. lugens: fewer

nymphs emerged from eggs, the period of egg development was

extended, and some nymphs were unable to moult to the second

instar. An important factor that may contribute to the negative

effects of high temperature stress on both development and

reproduction in N. lugens concerns the role of the intracellular

Figure 1. Range of development times for the nymphal stages of Nilaparvata lugens after exposure at the ULT50. N = 50 for control (31
male and 19 female) and treatment (21 male and 29 female) groups.
doi:10.1371/journal.pone.0047413.g001
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Figure 2. Range of development times for adults of Nilaparvata lugens after exposure as first instar nymphs at the ULT50. N = 50 for
control and treated groups (gender ratio as in Figure 1).
doi:10.1371/journal.pone.0047413.g002

Figure 3. Mean number of eggs per female after exposure of first instar nymphs and adults of Nilaparvata lugens at their ULT50.
N = 20 pairs for each mating combination. Mean values with the same letter are not significantly different at p,0.05 level.
doi:10.1371/journal.pone.0047413.g003
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Figure 4. Mean number of eggs per female after exposure of adults of Nilaparvata lugens at their ULT50. N = 20 pairs for each mating
combination. Mean values with the same letter are not significantly different at p,0.05 level.
doi:10.1371/journal.pone.0047413.g004

Figure 5. Range of egg development times after exposure of first instar nymphs and adults of Nilaparvata lugens at their ULT50.
N = 20 pairs for each mating combination.
doi:10.1371/journal.pone.0047413.g005
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yeast-like symbiotes (YLS). In N. lugens and L. striatellus the YLS are

contained in the fat body and transmitted transovarially between

generations ([67]). The YLS are reported to play an important role

in the abdominal segmentation and differentiation of planthopper

embryos ([66]) and synthesise essential amino acids (that are vital

for normal development) to compensate for variable amino acid

availability in different plant hosts ([70]). Exposure of newly

hatched nymphs of L. striatellus for 3 days at 35uC reduced the

number of YLS by approximately 90% ([71]). The same treatment

applied to nymphs of N. lugens for 3 days destroyed the YLS which

in turn impeded development and ecdysis ([111]). Similarly,

exposure at 32uC of 3 day-old adult females of N. lugens containing

fully developed ovaries reduced the number of YLS and lowered

fecundity ([64], [112]).

In a study on the pine false webworm Acantholyda erythrocephala,

eggs failed to hatch at around 30uC ([113]). It is possible that the

secretion of hormones from neurosecretory cells associated with

egg production is inhibited by a direct heat exposure ([38]), but

after transfer to favourable conditions, the reproductive activities

are resumed in both males and females, but with a net reduction in

overall fecundity. High temperature exposure may also reduce

mating success, sperm viability and oviposition, all of which would

impact negatively on generation-to-generation population abun-

dance ([114], [115]). Also, whilst the effects of sub-lethal heat stress

on N. lugens reported here arose from very brief exposures, in

nature, the time periods involved would be much longer, unless

the insects showed some form of avoidance behaviour. For

example, large leaves of the host plants of Manduca sexta L. became

hotter during the day than smaller leaves such that by selecting

smaller leaves for oviposition, the thermal buffering of extreme

temperatures would increase egg survival and successful hatching

([116]). A further consideration is that populations reared under

laboratory conditions over long periods of time and multiple

generations (with periodic refreshment with wild stock) may

become increasingly different from natural populations through

genetic bottlenecks ([117]). However, as population of N. lugens had

been in culture for less than two years (and completed 11–12

generations), such effects are unlikely with the studied colony. It is

also recognised that the effects of extreme exposures associated

with climate change will most likely be revealed over longer term

timescales and be subject to important interactions with other

physical and biological factors ([118], [119]).

With these provisos in mind, the results from this study can be

placed in a wider ecological context. Based on climatic data from

various countries across the distribution of N. lugens, Piyaphongkul

et al. ([28]) concluded that although mean temperatures were

generally below the estimated ULT50 values of nymphs (41.8u) and

adults (42.5uC) there were occasional extreme events that would

overlap with these lethal temperatures, and that through heat-

induced immobility at lower temperatures (at the CTmax), insects

may not be able to move away from potentially lethal exposure, or

as has been identified in this study, deleterious effects of

reproduction. When insects are heated (or cooled) at rates that

are faster than those experienced in nature, the observed mortality

(or other deleterious effects) may be caused by the range of

temperatures experienced, the rate of change, the most extreme

temperature experienced or a combination of all factors. When

adult N. lugens were heated at 0.5uC min21 to determine the

ULT50 (42.5uC), no insects were killed until exposure at 42uC
([28]). As the same rate of warming was used in these experiments

it seems reasonable to conclude that neither the change in

temperature (approximately 20u) nor the rate of increase in

temperature are detrimental to survival per se – rather, it is the

highest temperature experienced that impedes development and

lowers fecundity.

Across the distribution of N. lugens in tropical Asia there is

considerable variation in winter minimum temperatures and also

heat waves and more prolonged ‘hot spells’ in summer ([120]).

Extreme temperatures of over 45uC occur over the north-west part

of the region during May-June, and several countries in this region

have reported increasing surface temperature trends in recent

decades. For example, the annual mean surface air temperature in

Vietnam, Sri Lanka and India has increased by 0.30–0.57uC per

100 years ([121]). Moreover, regional climate change simulations

for the 21st century by Atmosphere-Ocean General Circulation

Models (AOGCMs) relative to the baseline period of 1961–1990

suggest that the area-average annual mean surface air temperature

over land areas of Asia will be higher by 1.660.2uC in the 2020s,

3.160.3uC in the 2050s and 4.660.4uC in the 2080s as a result of

increases in the atmospheric concentration of greenhouse gas

emissions ([121], [122]). Importantly, the influence of temperature

on insect development is related not only to the daily or monthly

mean values, but also to the rate of temperature change that will

sometimes include extreme exposures ([103], [119]). Whilst the

experiments reported here and the previous study on the lethal

and behavioural thermal thresholds ([28]) suggest that N. lugens

may be adversely affected across parts of its current distribution by

high temperature stress and progressive climate warming, for some

insects a warmer climate may be beneficial, as has been observed

with the range expansion of the coffee berry borer (Hypothenemus

hampei) ([123]). As such, the opportunity to benefit from a warmer

climate (or not to suffer deleterious effects) lies in part in the

difference in temperature between the upper lethal limit (and the

range over which sub-lethal effects occur) and prevailing and

future climatic regimes, and the ability to exploit new areas where

necessary resources are available, but temperature has previously

been a barrier to establishment and residency. Indeed, whilst

Piyaphongkul et al. ([28]) highlighted areas where N. lugens might

experience thermal stress under current climates, and would be

more likely to do so in warmer climate (unless acclimation

occurred), there were also parts of the distribution where winter

low temperatures currently prevent year-round survival, but which

might become more favourable through climate change.

In summary, the results reported here indicate that the

temperatures that kill around 50% of nymphs and adults of N.

lugens also exert negative effects on development and longevity.

The same exposures also lower fecundity through a combination

of effects that operate through both of the sexes, in which the

greatest effects occur when both males and females have

experienced sub-lethal heat stress.

Materials and Methods

Insect Materials
Adults of N. lugens were originally collected from the MARDI

Research Station at Pulau Pinang in Malaysia. All insects in the

stock culture and before and after experiments were reared on rice

seedlings, Oryza sativa L. cv. TN 1, in cages or perspex boxes

covered with 1.22 mm ventilation mesh at 16:8 L:D and

2360.5uC. Newly-hatched first-instar nymphs (within 48 h of

hatching) and unmated adults (30–35 days old) were used in the

experiments. All high temperature exposures were carried out in a

programmable alcohol bath (Haake Phoenix 11 P2; Thermo

Electron Corp., Germany) to an accuracy of 60.5uC.

To investigate the effects of sub-lethal high temperature on

development and fecundity of N. lugens, insects were exposed at

their upper lethal temperature (ULT50). The ULT is determined

Effects of Heat Stress on Nilaparvata lugens
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by exposing insects at progessively higher temperatures and

recording the mortality at each temperature. The ULT50 is the

estimated temperature at which 50% of the population is killed

([25]).

Effect of Sub-lethal High Temperatures on Development
and Longevity

A sample of 150 newly-hatched first instar nymphs were

warmed from 20uC at 0.5uC min21 to their ULT50 (41.8uC), held

for 2 min and then cooled at the same rate back to 20uC;

preliminary experiments had indicated the time required for

nymphs to be held at the ULT50 to experience the desired

exposure temperature. When insects are heated or cooled, for

example, in an alcohol bath, there is a time delay between the bath

reaching the set temperature and the insects achieving thermal

equilibrium at this temperature. This lag time is dependent on the

thermal properties of the exposure system ([124]) and in general,

larger insects will take longer to reach thermal equilibrium with

the surrounding environment ([125], [126], [127], [128]).

From the surviving population a sample of 50 nymphs was

placed individually on rice seedlings in Perspex boxes in the

standard rearing conditions. A control group of 50 first instar

nymphs were held individually in the same conditions. Daily

observations were made to record the time taken to moult to adult

and total longevity in the treatment and control groups. As the

gender of the treated and untreated insects could not be

determined at the first instar stage, the male and female sample

sizes were not equal. A split-plot method was used to determine

the main effects of treatment on the development and longevity of

N. lugens using temperature treatment and sex as fixed factors in

SPSS 17.0 software. In the split plot design, sex was a split plot

factor within the temperature treatment.

Effects of Sub-lethal High Temperatures on Fecundity
Nymphs. A sample 200 of newly-hatched first instar nymphs

were heated from 20uC at 0.5uC min21 to their ULT50 (41.8uC),

held for 2 min, and then cooled back to 20uC at the same rate.

Each surviving nymph was maintained individually in a Perspex

rearing box containing a rice seedling. After moulting to adult, 20

treated females and males were randomly selected and transferred

as pairs into separate rearing boxes with a rice seedling and

maintained in the standard rearing conditions. Fecundity was

measured by counting the number of emerging first instar nymphs

at daily intervals until there was no further emergence.

Adults. A sample of 600 newly-hatched first-instar nymphs

were reared together in a number of Perspex boxes containing rice

seedlings until the late fifth instar, after which males and females

were reared separately on rice seedlings to obtain unmated adults.

For each mating combination, 100 adult virgin males and females

were heated from 20uC at 0.5uC min21 to their ULT50 (42.5uC),

held for 6 min and then cooled back to 20uC at the same rate.

From the surviving populations and a control population of the

same age, 20 randomly selected pairs were established for each of

three mating combinations: treated male x treated female, treated

male x untreated female, and untreated male x treated female.

The control group was created by allowing nymphs to develop

from first to fifth instar after which the sexes were separated; 20

male and female pairs were taken from this stock and then allowed

to mate and oviposit under the same conditions. Fecundity was

measured in the same way as in the experiment with first instar

nymphs.

All data were analysed by one-way analyses of variance

(ANOVA) to test for the effect of treatment on the number of

emerged nymphs between treated nymphs and treated adults, and

among adult mating combinations. Where significant differences

occurred, the data were further analysed using Tukey’s honest

significance difference post-hoc test and the Games-Howell test to

separate statistically heterogenous and non-heterogenous groups

respectively.
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