Diseases of upland rice and their control through varietal resistance

Shu-Huang Ou, Keh-Chi Ling, Harold E. Kauffman, and Gurdev S. Khush

DISEASES OF UPLAND RICE

The basic diseases of upland rice are similar to those of flooded lowland rice. The absence of flood water, however, creates around the plants a different type of microclimate, one that favors the development of certain diseases. Soil-borne pathogens, for example, are more active, and cause more severe problems, in upland than in lowland rice.

Rice blast, caused by *Pyricularia oryzae*, is the most serious disease found in the extensive upland rice areas of Latin America, Africa, and Southeast Asia. The microlimate around upland plants appears to directly favor blast disease, although some early experiments indicate that high blast susceptibility might be caused by the reduced uptake of silica.

Sheath blight disease, caused by the soil-inhabiting fungus *Rhizoctonia solani (Thanatephorus cucumeris,* commonly known as *Corticium sasakii)*, may become increasingly serious as more fertilizers and other improved cultural practices are used on upland rice. The fungus is not active in flooded soil, but it will grow and multiply throughout the year in upland soil. It has a wide host range.

Seedling diseases, seldom a problem in lowland transplanted rice, may be important in direct-seeded upland rice. Soil-borne fungi and bacteria may cause seed decay or may attack the young seedlings.

Bacterial leaf streak *(Xanthomonas translucens* f. sp. *oryzicola)* is frequently found in upland rice, but seldom causes much damage.

Little information is available on bacterial blight (X.oryzae) in upland rice. We don't know if the disease can be transmitted through rice seeds. Under upland conditions, however, bacterial blight cannot be spread by irrigation water, so it may not be as destructive as in lowland rice.

Incidences of tungro and grassy stunt diseases seem to be similar for both upland and lowland rice. We don't know, however, the effect of the upland microclimate on the populations of the insect vectors.

Many more species of nematodes attack upland rice than lowland rice. In Japan, the cyst nematode was reported to have caused continuous cropping to fail in upland rice. In Liberia, cyst nematode severely damaged a small experimental plot of upland rice after continuous cropping. The International Institute of Tropical Agriculture, Ibadan, Nigeria, has stated, "Rice grown at IITA under upland conditions was generally infected by plant parasitic nematodes. The spiral nematode was distributed in all plantings in large numbers. The root-knot nematode, the root-lesion nematode, and the pin nematode occurred in less than 10 percent of the samples. One planting of five rice varieties in soil infested with the rootlesion nematode (55%) and the spiral nematode (45%) had 31,000 nematodes per plant $\boldsymbol{6}$ weeks after planting. All five varieties were more or less equally infected. IR20 rice grown on soil fumigated with D-D mixture to control the spiral nematode gave a 25.4-percent increase in yield over non-fumigated plots. IR665-79-2 showed no increase in the same trial."

Because microclimate in upland and lowland rice differ, the severity of other diseases may also differ.

VARIETAL RESISTANCE

Rice varieties that are resistant to various major diseases of lowland rice should also be useful for breeding resistance to upland rice.

Good sources of resistance to blast have been identified by the international blast nurseries (Table 14). Many have been crossed with semidwarf varieties or lines. Among the commonly used donor varieties are Tetep, Tadukan, C46-15, Carreon, Mamoriaka, Dawn, Kataktara DA2, and others. Some hybrid lines combine several sources of resistance to blast. A few such lines tested in upland trials in the Philippines were also good yielders. An example is a line from the complex cross **IR8/Dawn//IR8/Katakta**ra DA2.

Table 15 lists varieties resistant to bacterial blight. From these sources, many new varieties or lines that are resistant to bacterial blight - among them IR20, IR22, IR26, and several unnamed

Variety	Origin	Total tests 1964–1973	Susceptibility index	Resistant frequency (%)
		Gro	up I	
Tetep	Vietnam	ZOE	I.24	98,0
Nang Chet Cuc	Vietnam	<i>Z</i> 9Z	I,6d	88.3
C46-15	Burma	307	I.56	93,8
Tadukan	Philippines	3 09	1,50	94.5
Trang Cut L. 11	Vietnam	263	I.70	94.3
Pah Leuad 111	Thailand	258	1.57	94.3
H-5	Sri Lanka	ЫЕ	1.7I	92.7
R-67	Senegal	291	I.85	92.4
CI 7787	U.S.A.	278	I. 83	91.7
Mekeo White	New Guinea	276	I .9d	92.8
Ram Tulasi (Sel)	India	297	I.70	91.9
D25-4	Burma	292	1,73	93.6
M-302	Sri Lanka	310	I ,86	90.3
Padang Trengganu 22	Malaysia	239	I.93	87.4
Ta-poo-cho-z	China	277	1.61	91.3
Susceptible varieties:				
Kung-shan-wu-shen-ken	China	246	4.30	24.4
Fanny	France	252	4.39	19,d

. 7

(Continued on next page)

|--|

Variety	Origin	Total tests 1964–1973	Susceptibility index	Resistant varieties (%)
		Gro	up II	
C46-15	Burma	229	1.51	97.3
Mamoriaka	Malagasy	227	1 .d8	97.8
Carreon	Philippines	227	I.38	91.Ч
Huan-sen-goo	China	216	I 'BS	96.3
Dissi Hatif	Senegal	ZZE	1.51	E, 10
Ram Tulasi	India	211	1.41	97.2
Ram Tulasi (Sel)	India	19 d	↓ .42	97.3
Thava Lakkanan PTB 9	India	222	1.52	96.9
Macan Tago	Philippines	155	I .75	95.5
Ahmee Puthe	Burma	I 36	I.d9	97.1
Ca 435/b/5/1	Indonesia	205	I . 56	97.1
DNJ-60	Bangladesh	224	I .93	93.8
Ca 902/b/2/2	India	219	1,60	94.5
R-67 ^b	Senegal	ZOZ	I .6d	94.6
N-12 ^b	Japan	225	180	93.9
Pah Leuad 29-8-111	Thailand	220	I .65	95.5
Т 23	India	ZZO	I.74	94.4
DZ-193	Bangladesh	231	1.19	94.4
Pi-4	Japan	I 66	I. 54	93.9
Ca 902/b/3/3/1	Chad	ZZ6	I .60	94.7

1.1

.....

^aGroup I consists of 258 varieties selected at random and tested in IBN since 1963; Group II consists of 321 varieties selected from more than 8,200 varieties after repeated tests at IRRI and was entered in IBN since 1965. ^bUpland varieties.

	Comi dano af		BB disease rating ^{b}		ating ^b	Desistance of tolenance to
Tall resistant donor	Semidwarf progeny	Cross ^a	NE Asia	SE Asia	South Asia	other diseases and insects
		Sin	gle rece	ssive gene ^d		
BJ1 BJ1 BJ1	 RP291-18-60 RP633-150-6-5	– IR8/BJ1 IR22//IR8/BJ1	R R R	MR R R	R-MS MR-S X	BLS, B, T, SB BLS, GLH
DZ 192 DZ 192	IR1545-339	 IR24/DZ 192	R R	MR MR	мs-s м <i>x-</i> s	8T8, ETH 8T2
		Sir	ngle don	ninant gene	2	
Sigadis Sigadis	IR1529-680-3	 IR305/IR24	M R MR	MR MR	MS MR-MS	B, T B,8LS, GLH
TKM 6 TKM 6 TKM 6 TKM 6	- IR20 IR26 IR2061-464	– IR262/TKM6 IR24/TKM6 IR833//IR1561/1737	 MR R	R MR MR	MXAMS ∀XAMS MR-MS	B, GLH, T B, GLH, T, SB B, BPH, GLH, T, SB B, T, GSV, BPH, GLH, SB
W1263 W1263	IR2031	-	MR -	MR-MS MR	MR-S	T, BPH, GLH, SB, GM T, GSV, BPH, GLH, GM
Wase Aikoku Wase Aikoku	IR1697-42-2-2	– IR8 ² /Wase Aikoku	– MR	MR MR	M <i>X-S</i> MS	

Table 15. Sources of resistance to bacterial blight (BB): tall donor parents and their semidwarf progenies (1972 and 1973 International Bacterial Blight Nursery).

(Continued on next page)

Tell second day of	Semidwarf Cross progenies	0	BB disease rating ^b			Posistance or tolerance to
Tall resistant donor		Cross*	NE Asia	SE Asia	South Asia	other diseases and insects
	Other	tall variation with no.	duan and du		nias Inha	itan oo of resistan oo
	Other	tall varieties with no t	lavancea aw	arj proget	nies – Inner	itance of resistance
Lacrosse x Zenith-Nira	-		_	MR	MR-S	
Malagkit Sungsong	_		MR	MR	MR-MS	
Nagkayat	-	-	R	MR	MR-MS	
Remadja		-	MR	MR	MR-MS	GLH, T
Semora Mangga	_	_	_	R	MR	

a' = first cross; // = second cross. bR = resistant; MR = moderately resistant; S = susceptible; MS = moderately susceptible. ^{c}RLS = bacterial leaf streak; B = blast; T = tungro; BPH = brown planthopper; GLH = green leafhopper; SB = stem borer; GM = gall midge. d Inheritance to typical Philippine strain of X. oryzae (Pxo 61).

132 UPLAND RICE

Resistance		Common to
India	Philippines	Comments
	Talls	5
MR	R	R-MR to BB
	MR	R-MR to BB
MR-MS	MR	R-MR to B and BB
-	MR	MR to BB
MR	MR	R to BB
	Semidwa	arfs
MR	R	High yield potential
MR	MR	
	R	R to BB
-	MR	Pure line
-	R	R to BB, T; pure line
	MR	R to BB, T, BPH, GLH
	Resist India MR MR-MS MR MR MR MR 	ResistanceIndiaPhilippinesIndiaPhilippinesIndiaPhilippinesIndiaPhilippinesIndiaRMRRMR-MSMRMRMRMRMRMRRMRRMRRMRRMRRIndiaRMRRMRRIndiaR<

Table 16. Sources of resistance to bacterial leaf streak from tall indica varieties and their semidwarf progenies."

"Source: Ou et al. 1971; Row et al. 1968 Rao et al. 1972.

hybrid lines – have been developed. Progenies from some crosses between resistant varieties have broader spectrum and higher levels of resistance than the individual parents.

Good sources of resistance to bacterial leaf streak and resistant hybrid lines are shown in Table 16. The following tall local varieties and hybrid lines are resistant to tungro virus.

Adday local (Sel) Adday (Sel) Andi from N. Pokhara T412 Basmati 37 Basmati 370 Bengawan Chunta 313 Hao **x** Binastian Dee-geo-mean-don

Pehkahok-kimkan Prine Chan Ying Tao PI 160677-2 PI 184675-2 PI 184675-4 PI 184676 Podiwi, A8 Rajamàndal Baran . Ram Tulasi Red Rice

Tall resistant donor	Semidwarf progenies	Cross ^a	Resistance to other diseases and insects
Gam ^{pəl}	IR2061-464 XV-Z	IR833//IR1561/IR1737 Gam Pai I5 ² /TNI	8B, GSV, BPH, GLH
H8	BG11-11	Engkatek/H8//H8	BPH, E L H
HR21	IR1364-37	IR262/HR21	GLH
Pankhari 203	IR825-11-2	(IR8/P203//Peta ⁶ /TN1)	-
Peta	C4-63	BPI 76/Peta	GLH
PTB 18	CR94-13 IR2070 selections IR2071 selection	PTB 18/PTB 21//IR8 IR20 ² /O. nivara//CR94-13 IR1561/IR1737///CR94-13	BPH, GLH, GM BB, GSV, BPH, GLH BB, GSV, BPH, GLH
Sįgadis	Mala	CP-SLO ² /Sigadis	BB, GLH
TKM 6	1 R 20 IdZ6	IR262/TKM 6 IR24/TKM 6	BB, GLH, SB BB, BPH, GLH, SB
W 1263	IR2039 selections	IR1330-5/IR1737	BB, GSV, BPH, GLH, GM

Table 17. Sources of resistance to tungro virus: tall donor parents and their semidwarf progenies.

a' =first cross; // = second cross; /// = third cross.

DV 29 Salak 2885 Fadjar Seratus Hari T/36 FB 24 Seri-Raja Habigonj DW # 8 Tjahaja H4 Tieremas Indrasail TP x Rexoro SB JC 170 Tsou-vuen Kai Lianh Hsung Tieng Urang-urangan 89 Ladang 59-334 (B-11 x Mass) Lang Chung Yi Lung Ju 6517 Latisail (Dacca 17) Latisail (T. Aman) Malagkit Sungsong Padi Kasalle

We also find sources of resistance to tungro among tall varieties and their semidwarf progenies (Table 17).

The only source of high-level resistance to grassy stunt is a strain of wild rice, *Oryza nivara*. Fortunately, the resistant gene of this strain is easily transferred to many semidwarf varieties. Several sources of field resistance to grassy stunt without *Oryza nivara* heritage appear promising, particularly **CR94-13** from India. Many hybrid lines that are resistant to both the viruses and their vectors are now being tested.

Distinct genetic differences in resistance to sheath blight have been observed, although highly resistant **or** immune varieties have not been found. The upland variety Hashikalmi and the dual-purpose variety Dular are both moderately resistant. Most of the following varieties and hybrid selections are lowland rices that appear to be at least moderately resistant to sheath blight:

Tall	Dwarfs
CTG 1206	Bahagia
DD 24	Mehran
DD 63	Pankaj
Dular	Pelita 1/1
DZ 192	
Hashikalmi	
Kunrari DA-15	
K.P.F. 6	
Laka	
TKM 6	
46 Palman	

Because several diseases often occur simultaneously **in** the same field, new upland varieties should have combined resistance to all major diseases. Several promising hybrid lines developed for lowland culture have such resistance. Although IR26 is resistant or tolerant to most rice diseases, neither it nor other promising hybrids have been tested for suitability for upland culture.