
91 B/Eリンクドスキャンマスによる生理活性物質の構造解析

働サントリー生有研 〇ピーター ケニー, 直木 秀夫

メタステーブルイオンはフラグメンテーション経路の裏付けや、イオン構造の解析に重要な手掛かりを与え、この手法を用いた有機化合物の構造決定には有力な手段となっている。 通常のイオンはイオンソースで生成、加速され、電場及び磁場で偏向を受けて、検出器に至り、マススペクトルとして観測される。 一方、メタステーブルイオンは、通常イオンと同様に生成、加速されたイオンが、イオンソースから電場に至るまでの自由空間領域で速度が変化せずに、通常イオンから開裂を起こして生じるイオンである.

メタステーブルイオンの観測法には種々あるが、我々は正配置型二重収束 質量分析計で得られる電場(E)と磁場(B)を一定の比で同時にスキャン するリンクドスキャン方式を用いて測定を行った. この方法によると特定 のプレカーサーイオンから自由空間領域で生じた娘イオンを全て観測するこ とができ、両者の対応を直接的に決定出来る特長がある.又、バックグラウ ンドや不純物によるシグナルは観測されず、イオンの選択性に優れているた め、混合物や生体試料の分析に利用されている. 今回、この方法を抗菌性 物質アンドリミドの構造決定に応用したので報告する.

アンドリミド(C₂₇H₃₃N₃O₅)はタイ産トビイロウンカ(Nilaparvata lugens)の卵より単離した細胞内共生微生物の培養液中から分離,精製され た抗菌性物質である. この化合物はイネの白葉枯病原菌(Xanthomonas ca mpestris pv.oryzae)に対して極めて特異的に抗菌性を示すが、他の極めて 類縁の菌に対してさえも1/20以下の活性しか示さない. アンドリミドの 構造については、機器分析データ及び部分構造の合成とそのデータの比較に よって、しのように得られた.

1

692

特に、¹H-NMR によって得られた各部分構造の連結順序については、高分解能 マスの組成式の結果と、B/Eリンクドスキャンによるフラグメントイオン の生成過程の検討との組合せによって得られたものである。

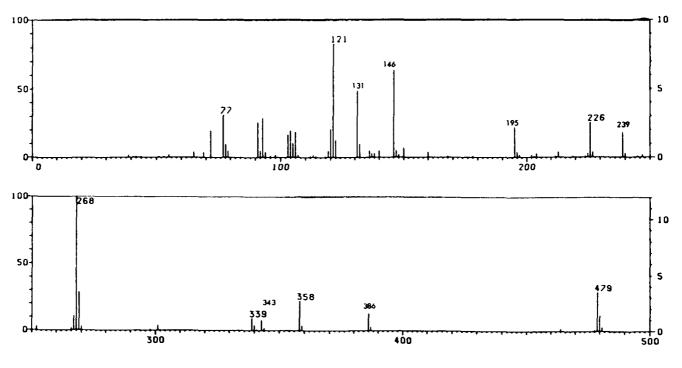


Fig 2

即ち, EI-MS (Fig 2) においては、カルボニル基を持つ化合物について は、一般にカルボニル炭素とα位の炭素間の開裂(α-開裂)が起こるが、 アンドリミドについても m/z 386,358,339,268,239,121 のイオンが見い だされ、これらがα-開裂による事は容易に推定される.

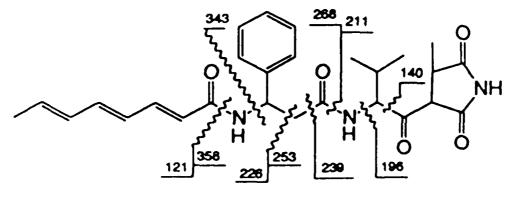


Fig 3

しかし, m / z 131,146 のようないくつかのイオンについては, 主鎖にお ける単純な開裂のみでは説明をつけがたい. そこで, これら一連のα-開裂 では説明のつけられない重要と思われるフラグメントイオンについて, B / Eリンクドスキャンによる検討を行った.

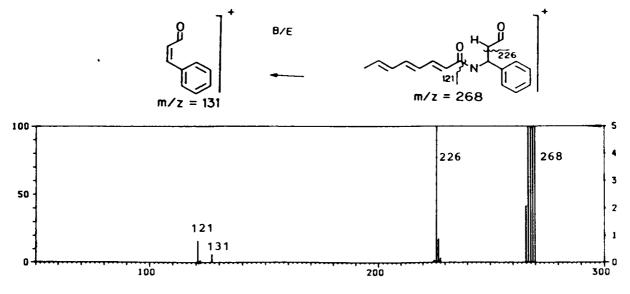
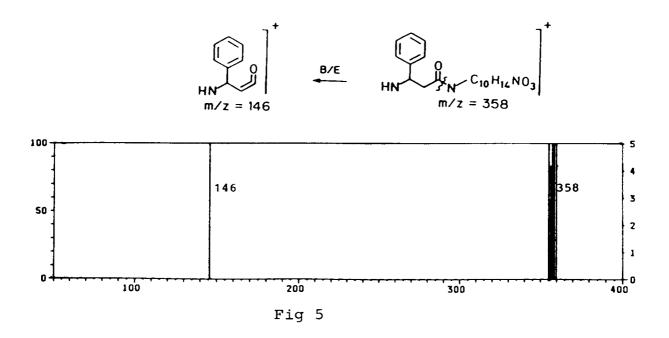



Fig 4

また同時に,フラグメントの組成を明らかにするために,高分解能測定も行った. このようにして,先に示したm/z131.146 について,その親イオンを確定するに至った. 同様な手法で,さらに m/z 226ついては,このイオンが2種類の親イオン m/z 479.268 を持つ事も明らかとなった. これらの結果は table 1 にまとめて示す.

このようにして、アンドリミドのEI-MS における開裂の経路が推定され、 すべての重要なフラグメントイオンがFig 3 によって説明される事が明らか となった。

694

ION	DAUGHTER ION
479*	464,386,358 [*] (C ₁₉ H ₂₄ N ₃ O ₄)
	$343^{*}(C_{19}H_{23}N_{2}O_{4}), 340, 339$
	268,267,239,226
358*	146
268*	226 [*] (C ₁₅ H ₁₆ N ₁ O ₁),131,121
239	195
	358 [*] 268 [*]

* Formula from high resolution measurement.

TABLE 1

このように、高分解能測定と組合せたメタステーブルイオンの検討によっ て、分子イオンピークからのすべての開裂経路を明らかにする事ができ、ひ いては天然物の構造を推定するうえで、極めて重要な手法となると考えられ る.

References

- 1. Boyd, R.K., Beynon, J.H. Org. Mass Spectrom., 1977, 12, 163
- 2. Bruins, A.P., Jennings, K.R., Evans, S. Internat. J. Mass Spectrom Ion Physics., 1978, 26, 395
- 3. Fredenhagen, A., Tamura, S.Y., Kenny, P.T.M., Komura, H., Naya, Y. Nakanishi, K., J.Am.Chem.Soc., in press

APPLICATION OF THE B/E LINKED SCAN IN THE STRUCTURE DETERMINATION OF BIOACTIVE COMPOUNDS.

P. T. M. Kenny and H. Naoki

(Suntory Institute for Bioorganic Research)

Metastable ion measurements have frequently been used to elucidate complex fragmentation pathways. Several methods are available to monitor metastable ions which are not normally detected in a double focussing mass spectrometer. In this study the voltage of the electric sector (E) was varied simultaneously with the magnetic field (B) such that B/E is constant. This linked scan yields all daughter ions from a specified parent ion. A novel antibiotic was isolated from the culture of an intracellular symbiont present in the eggs of the brown planthopper Nilaparvata lugens. This compound has highly specific activity against the white blight pathogen of rice. The proposed structure was deduced from spectroscopic data and the synthesis of several fragments. A series of B/E linked scans in conjunction with accurate mass measurements defined the connectivity of the partial structures established by 'H-nmr measurements. The origin of several ions which could not readily be explained was thus clarified.

696