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COMPLEX INTERACTIONS
BETWEEN MUTUALISMS:

ANTS TENDING HOMOPTERANS
PROTECT FIG SEEDS AND
POLLINATORS'

Stephen G. Compton? and Hamish G. Robertson?

Ants are commonly attracted onto plants bearing
honeydew-producing insects, particularly homopter-
ans. The presence of ants often increases the survival
of the homopterans and consequently can increase their
deleterious effects on the host plant (Way 1963, Banks
and Macauley 1967). However, ants tending homop-
terans can also exclude other herbivores. If this pro-
tection outweighs the damage caused by the honeydew-
producer, then an indirect mutualism is established,
with all three parties benefitting (Carroll and Janzen
1973).

Evidence that ants tending homopterans can provide
benefits for host plants is limited. Room (1972) dem-

onstrated increased shoot growth by the mistletoe 7a-
pinanthus when homopteran-tended ants were present.
Nickerson et al. (1977) found that on soybean, ant
predation of lepidopteran eggs was sometimes signif-
icantly greater on plants inhabited by a membracid.
Ants tending aphids on trees can also reduce defolia-
tion (Laine and Niemela 1980, Skinner and Whittaker
1981). In a study of ants tending a membracid on Sol-
idago, Messina (198 1) produced evidence that the plants
increased their seed output in the presence of ants and
concluded that the benefits of membracid presence did,
on occasion, outweigh the disadvantages.

Here we describe exclusion experiments that dem-
onstrate how a mutualism between ants and homop-
terans can benefit another mutualism, that between fig
trees (Ficus species, Moraceae) and their insect polli-
nators. Fig trees are entirely dependent on fig wasps of
the family Agaonidae for pollination, while the larvae
of agaonids develop only in the seeds of the Ficus they
pollinate (Wiebes 1979). Figs also support a specialized
fauna of parasitoids and seed predators, many of which
oviposit into the fig from the outside. We tested the
hypothesis that ants visiting branches with figs to tend
homopterans would hinder oviposition by wasps on
the outside of the figs and reduce both seed predation
and parasitism of the pollinator.
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The Species Studied

The Cape fig tree, Ficus sur Forsk., is pollinated by
Ceratosolen capensis Grandi (Hymenoptera, Agaoni-
dae). Female wasps enter the ostiole of the fig, pollinate
the female flowers, and oviposit in some of the ovules.
While figs are being pollinated, females of Sycophaga
cyclostigma Waterst. (Torymidae) may also enter the
figs. These wasps are strictly seed predators, with adults
that do not pollinate and larvae that develop inside
galled ovules. Larvae of the closely related sycophagine
wasp Idarnes sp. also gall the ovules of F. sur, but they
develop from eggs inserted into ovules from the outside
of'the fig. A fourth fig wasp, Apocrypta guineensis Gran-
di, is parasitic on larvae of the other species. Like
Idarnes it is equipped with a long ovipositor and ovi-
posits through the wall of the fig. Exceptionally (on
three occasions) two adult 4. guineensis emerged from
a single seed.

Hilda patruelis Stal. (Homoptera, Tettigometridae)
produces honeydew and is often abundant on the fig-
producing branches of F. sur, where ants are almost
invariably found tending both nymphs and adults.
Pheidole megacephala Forel. and Polyrachis schistacea
(Gerstaecker) were the major ant species at our sites.
Ant presence may reduce the incidence of egg parasit-
ism by the encyrtid Psyllechthrus oophagus Ghesquiere
(Weaving 1980).

Methods

Exclusion experiments were carried out on two F.
sur trees growing at Howison’s Poort near Grahams-
town (33°22' S, 26°29' E). The trees were growing =50
m apart and had initiated large fruit crops at about the
same time in June 1985. Tree 1 was =3 m high and
Tree 2 =7 m high. Fig-producing branches were treated
in pairs, the branches of each pair being within 50 cm
of one another. One of the branches was banded at the
base with Formex to exclude ants, while the other was
the control. Bands needed to be renewed at about fort-
nightly intervals. Seven pairs of branches were chosen
on Tree 1, which had many ants present, and three
pairs on Tree 2, which had very few ants.

Ants, H. patruelis, and fig wasps were counted on
each of the marked branches eight times between June
and August, after which the figs had matured and were
ready to harvest. Insect numbers were subsequently
divided by the initial number of figs, to adjust for dif-
ferences in numbers of figs between branches. We har-
vested figs over a period of 4 wk and excluded any
from which wasps had already emerged. Each fig was
placed in a sealed bottle. After the emergence of the
wasps was completed, figs were placed in a freezer for
later counting. As the males of sycophagine species
cannot be distinguished at present (Wiebes 1968), we
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assigned these males to the same species as the females
present in each fig. On the rare occasions (10 figs) when
females of both sycophagine species were present, we
assigned the males in the same proportions.

Results

Ant densities were much greater on Tree 1 than on
Tree 2 (Table 1; unbanded branches only). Pheidole
megacephala was the only ant species recorded on Tree
1, while on Tree 2 Polyrhachis schistacea was the most
common species, with Tetraponera sp. and Techno-
myrmex sp. also present. Exclusion of ants from band-
ed branches was found to be incomplete because
“bridges” were sometimes formed as the growth of the
figs brought them into contact with other branches.

H. patruelis densities followed a similar trend to those
of ants (Table 1). Ant numbers on unbanded branches
of Tree 1 were significantly correlated with numbers
of H. patruelis (r = 0.447, P < .001, n = 87, obser-
vations where neither ants nor homopterans recorded
were excluded), confirming that ants were attracted by
the bugs. Significantly more females of the parasitoid
A. guineensis were observed on the outside of figs on
banded than on unbanded branches of Tree 1 (Table
1: paired ¢ test, t = 3.298, P < .002, n = 24, paired
zero values excluded). On Tree 2 (with low ant den-
sities), there was no significant difference in A. gui-
neensis numbers between the two treatments (1 = 1.262,
P> 1, n=10).

As would be expected from the larger number of 4.
guineensis females observed on banded branches of
Tree 1, the mean number of their progeny was =~4.2
times as great as on unbanded branches, the difference
being highly significant (Table 2). Seed predation by
Idarnes sp. was also significantly greater on banded
than on unbanded branches. Because of the lower par-
asitism of pollinators by 4. guineensis on unbanded
branches of Tree 1, over three times as many C. ca-
pensis emerged from these figs as from those of banded
branches. Once again the difference was highly signif-
icant (Table 2). S. cyclostigma females enter the figs to
oviposit and so escape most of the ant interference.
Their numbers did not differ significantly between the
two treatments (Table 2).

On Tree 2, with its much lower ant densities, there
were no significant differences at all between treatments
(Table 2). Parasitism by A. guineensis was uniformly
high and pollinator emergence correspondingly very
low in figs of both unbanded and banded branches.
Parasitism by A. guineensis and seed predation by
Idarnes sp. and S. cyclostigma were higher on both
branch types on Tree 2 than on banded branches of
Tree 1. As a result over four times more C. capensis
emerged from figs on banded branches of Tree 1 than
from either unbanded or banded figs on Tree 2. It is
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TABLE 1. Comparison of ant, Hilda patruelis, and female Apocrypta guineensis densities on unbanded (ant-accessible) and

banded (ant-excluded) fig-producing branches of two Ficus sur trees.
Tree 1
Unbanded Banded Total

No. branches 7 7 14
Initial no. figs per branch

(mean + SE) 12.286 + 0.622 15.143 + 0.671 13.714 + 0.454
Density per branch (mean + sg)*

Ants 7.920 = 0.792 0.369 + 0.162 4.145 + 0.539

H. patruelis 0.145 + 0.031 0.030 = 0.010 0.088 = 0.017

A. guineensis females 0.056 = 0.025 0.136 = 0.037 0.096 = 0.023

* Mean densities per branch were calculated by dividing each number counted by the initial number of figs on the branch.
Insect counts were made on eight occasions between June and August 1985. Counts of Ceratosolen capensis, ldarnes sp., and
Sycophaga cylcostigma are not presented in this table because they were rarely seen.

possible that the high density of ants on Tree 1 deterred
A. guineensis and the seed predators from frequenting
that tree even though there were some ant-free branch-
es.

The overall number of wasps emerging per fig on
unbanded branches of Tree 1 was 1.5 times as great as
from figs on banded branches and from all the branches
on Tree 2 (Table 2). This suggests that the detrimental
effects of 4. guineensis are not fully reflected by counts
of the numbers of the parasite’s progeny. Host feeding
was not observed, but probing by this parasitoid may
have caused the additional mortalities.

The results in Tables 1 and 2 are combined in Table
3 to show the degree of correlation between counts of
A. guineensis, ants, and H. patruelis outside the figs
and numbers of C. capensis and A. guineensis progeny
recorded subsequently inside the figs. These results
confirm the link between the presence of H. patruelis,
the presence of ants, and the reduction in numbers of
the parasitoid 4. guineensis. For instance, ants and H.
patruelis counted outside the figs are directly correlated
with numbers of pollinators produced inside the figs.

Likewise, both ant and H. patruelis numbers are neg-
atively correlated with the number of 4. guineensis
produced inside the figs.

Discussion

Ant presence can have a dramatic effect on the degree
of parasitism of fig wasp pollinators by A. guineensis
and on the extent of seed predation by Idarnes sp.
Ants were observed to reduce parasitism and seed pre-
dation by disturbing or even capturing female wasps
on the surface of the fig. Even though the pollinator C.
capensis enters the fig to oviposit, it is not immune to
predation by ants because it is vulnerable when locating
the ostiole of the fig. However, the large number of C.
capensis emerging from ant-protected figs (Table 2)
suggests that this was not an important factor for the
pollinator population.

We believe that the net effect of H. patruelis and its
associated ants is generally beneficial for fig trees col-
onized by the bug (Fig. 1). Observations of F. sur in
Zululand and the Transvaal suggest that H. patruelis
and its attendant ants are found on this tree throughout

TABLE 2. Numbers of wasps that emerged from figs on unbanded (ant accessible) and banded (ant excluded) branches of

two F. sur trees. Data are means =+ SE.

Tree 1 Tree 2
Unbanded Banded Unbanded Banded
(n = 50) (n = 49) zZt (n=16) (n=195) zZt
No. C. capensis 319.7 = 23.04 104.2 + 11.62 6.66%** 19.3 = 4.90 22.6 + 3.85 0.85Ns
(pollinator)
No. A. guineensis 31.8 £ 5.78 1344 + 12.68 6.67*** 187.8 + 23.21 211.7 £ 22.39 0.71Ns
(parasitoid)
No. Idarnes sp. 0.02 = 0.02 7.2 +£2.23 3.90*** 12.7 + 6.24 11.3 + 4.87 1.02~s
(seed predator)
No. S. cyclostigma 29.9 + 7.96 11.9 + 3.94 0.55Ns 41.1 £ 7.52 61.9 + 8.30 1.53Ns
(seed predator)
Total no. wasps 381.4 = 20.52 257.7 + 17.28 4.23%** 260.9 + 30.43 307.4 = 28.90 1.42n~s

*** P < .001, Ns = nonsignificant.
t Mann-Whiteny U test, Z = normal deviate of U.
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TaBLe 1. Continued.
Tree 2
Unbanded Banded Total
3 3 6
10.334 + 0.452 9.667 = 0.284 10.000 + 0.248
0.016 = 0.009 0.000 = 0.000 0.008 = 0.005
0.000 = 0.000 0.004 = 0.004 0.002 = 0.002
0.267 £ 0.119 0.441 = 0.195 0.354 = 0.114

southern Africa, and that parasitism of the pollinator
is markedly reduced whenever ant densities are high.
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NOTES AND COMMENTS

FiG. 1.
the species described in this study. These species are Ficus
sur (fig tree), Hilda patruelis (homopteran), Psyllechthrus
oophagus (hymenopteran egg parasitoid), Pheidole megaceph-
ala (ant), Ceratosolen capensis (fig tree pollinator), Apocrypta

Positive and negative interactions between some of

guineensis (parasitoid) and Idarnes sp. (seed predator).
direct effects; ——— indirect, net effects. Note that indirect
effects via other species may have an opposite sign to the
direct interaction. Signs in parentheses indicate relationships
that have not yet been confirmed.

TaBLE 3. Correlations (Pearson’s r) between mean numbers
of ants, H. patruelis, and A. guineensis per fig counted on
fig-producing branches, and the mean number and per-
centage of Ceratosolen capensis (pollinator wasp) and A.
guineensis progeny that emerged from the figs on those
branches (n = 20).

No. counted outside figs

A.
H. guineensis
patruelis females
Emerging from (homop- (para-
inside figs Ants teran) sitoid)
No. Ceratosolen JT13%%* .554% —.522%
No. A. guineensis — . T28%** —.672%* .630%*

*P < .05, % P < .0l,**P< .00l

1979. Co-evolution of figs (Ficus spp.) and their
insect pollinators. Annual Review of Ecology and System-
atics 10:1-12.
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