from WBPH in 1963, 1967, and 1977. Light-trap collections at BRRI farm indicated two major BPH peaks in a year (April–May and Oct.–Nov.); the population has increased 3–7 times since 1976. It appears that BPH may spread to more districts where varieties with high yield potential are cultivated and may ultimately threaten rice production in Bangladesh. BPH has become the most serious rice pest in Bangladesh. **W**

Resistance of the brown planthopper to carbofuran at IRRI

E. A. Heinrichs, entomologist, and S. L. Valencia, research aide, International Rice Research Institute

Carbofuran has been used for about 7 years at IRRI. In 1977 it failed to control the brown planthopper (BPH) *Nilaparvata lugens* in an experiment where carbofuran granules had been applied repeatedly at 2-week intervals in continuous crops over a 3-year period. In

Residual activity of acephate sprays on rice as influenced by spreader-stickers

E. A. Heinrichs, entomologist, and M. Arceo, research assistant, International Rice Research Institute

Spreader-sticker compounds are rarely mixed with insecticides, in spite of the common assumption that frequent a nearby plot, carbofuran at the rate of 6 kg active ingredient/ha applied as a broadcast treatment to paddy water also failed to control the hopper.

Brown planthoppers collected from those plots were reared in the greenhouse for four generations. The susceptibility to carbofuran of the field strain was compared with that of a greenhouse strain never exposed to insecticide. Two application methods were used: in the contact toxicity study, insecticide was sprayed directly on adult hoppers; in the paddy-water test, carbofuran granules were applied to the paddy water and hoppers were allowed to feed on the treated plants.

In the contact toxicity study, the field strain was significantly more resistant to carbofuran than the greenhouse strain at all rates tested (see table). In the paddywater test, 6 kg/ha was required to kill 98%) of the field strain while 1 kg/ha killed 100% of the greenhouse strain. LD50 studies indicated that the field strain was seven times more resistant than the greenhouse strain (see article, this issue).

showers during the tropical rainy season wash insecticide spray deposits off rice foliage. In 1977 a preliminary study was conducted to determine whether various spreader-sticker compounds mixed with acephate had any beneficial effect on the amount of the initial deposit and on residual activity of the insecticide.

Acephate at the rate of 0.75 kg a.i./ha

Residues of acephate on leaves of IR22 rice treated with foliar sprays containing spreader-sticker. IRRI, 1977 wet season.

Treatment ^a	Residues (ppm) ^b		
	1 DAT	5 DAT	10 DAT
Acephate	19.5 b	4.3 cd	0.09 cd
Acephate + Adhesol	26.1 b	21.3 a	0.11 bcd
Acephate + Triton B-1956	37.2 ab	7.5 bc	0.08 cd
Acephate + Tenac	38.2 ab	12.6 b	0.14 bcd
Acephate + Citowett	51.2 a	7.8 bc	0.34 a
Control	nd ^c	nd	0.00 d

^aSpreadersticker applied at a concentration of 0.5%; foliar sprays at 0.75 kg a.i./ha.

^bFigures are averages of 4 replications. In a column, any 2 means followed by a common letter are not significantly different at the 5% level.

 c nd = none detected (< 0.005 ppm).

Comparison of the resistance of a field strain and a greenhouse strain of the brown planthopper to carbofuran.^{*a*} IRRI greenhouse, 1977.

	Mortality (%)		
Rate (kg a.i./ha)	Green- house strain ^b	Field strain ^c	Differ- ence ^d
	Contact toxicity ^e		
0.025	25 a	Sa	20*
0.050	68 b	9 a	59*
0.100	83 c	29 b	54*
0.250	100 d	56 c	44*
0.500	100 d	59 c	49*
	Paddy-water application		
0.5	67 b	21 c	46*
1.0	100 a	32 c	68*
4.0	100 a	77 b	23*
6.0	100 a	98 b	2 ns

^{*a*}Means within a column followed by a common letter are not significantly different at the 5% level.

- ^bCultured in the greenhouse for about 30 generations.
- ^cCollected from field plots that had received repeated application of 2 kg a.i. carbofuran/ha over a 3-year period and reared in greenhouse culture cages for 4 generations.
- ^dAn asterisk indicates a statistical difference between the greenhouse and field strains at the 1% level.
- ^eApplied with Potter's spray tower.

was applied in combination with each of four different spreader-stickers at a concentration of 0.5%. Leaves were analyzed at 1, 5, and 10 days after treatment (DAT) by gas chromatography. At 1 DAT all treatments with spreaderstickers had higher amounts of acephate, the Citowett treatment having the highest (see table). At 5 DAT the Adhesol treatment had the largest amount of acephate, but at 10 DAT the differences among treatments were slight. In the treatments with spreader-stickers the initial deposit of acephate on the leaves was larger but the residual activity was not significantly longer than that in the treatment with acephate alone, as indicated by the acephate residues at 5 and 10 DAT.

The mortality of caged brown planthopper *Nilaparvata lugens* and green leafhoppers *Nephotettix virescens* in the various treatments at 1, 5, and 10 DAT indicated that the spreader-stickers did not prolong residual activity.