Zoological Studies

A Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Inferred from Mitochondrial 16S rDNA Sequences

Wen-Bin Yeh¹, Chung-Tu Yang¹, and Cho-Fat Hui^{2,*}

¹Department of Entomology, Chung-Hsing University, Taichung, Taiwan 402, R.O.C. Tel: 886-4-22840799 ext. 555. Fax: 886-4-22875024.

²Institute of Cellular and Organismic Biology , Academia Sinica, Taipei, Taiwan 115, R.O.C. Tel: 886-2-27899512. Fax: 886-2-27858059.

(Accepted July 7, 2005)

Wen-Bin Yeh, Chung-Tu Yang, and Cho-Fat Hui (2005) A molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea) inferred from mitochondrial 16S rDNA sequences. Zoological Studies 44(4): 519-535. Phylogenetic reconstruction of family relationships within the superfamily Fulgoroidea was conducted based on DNA sequences of the mitochondrial 16S rDNA gene. Sequences of 569 bases of the 3' end of the gene from 59 populations representing 53 species within 15 families were analyzed. Ranges of the 16S rDNA nucleotide divergences within species were 0%-0.6%, those among species of a given genus were 1.7%-7.8%, and those among genera of the same tribe or subfamily were 8.1%-19.5%. Scatterplots of total substitutions (Tvs) against transversions (Tv), or transitions (Ts) of the 16S rDNA gene revealed that the mutation rate of Tv was 3 times higher than Ts, and substitutional saturation has not yet been reached. Phylogenetic reconstruction and bootstrap confidence analysis revealed several basal lineages and 1 advanced group. The basal lineages included 5 families, where the Cixiidae exhibited close affinity to the Delphacidae, while the phylogenetic positions of the Achilidae, Meenoplidae, and Lophopidae were ambiguous. Monophyly of the remaining 10 advanced families showed several subdivided family groups with close affinities of the Derbidae to the Tropiduchidae, Dictyopharidae to the Fulgoridae, and Ricaniidae to the Eurybrachidae. The ancestral lineage of the Tettigometridae which exhibits many ancestral morphological characters was not supported by the 16S rDNA sequence data analysis, and the relationship of the families Flatidae and Nogodinidae was poorly resolved. In addition, the Issidae was not shown to be monophyletic, although issid members at the subfamily level were well supported. http://zoolstud.sinica.edu.tw/Journals/44.4/519.pdf

Key words: Molecular phylogeny, Mitochondrial 16S rDNA, Hemiptera, Fulgoroidea.

Planthoppers constitute a large group of phytophagous insects in the order Hemiptera and family Fulgoroidea including more than 9000 described species with division into 19 families distributed worldwide (O'Brien and Wilson 1985). These insects occupy extensive ranges of habitats (Denno and Roderick 1990), and some major agricultural pests are included (Wilson and O'Brien 1987). The Fulgoroidea consists of common herbivores in both agricultural and natural systems, often causing severe damage to their host plants. Attention has focused on a number of planthopper

species because of large damage incurred by the crops of maize, rice, wheat, and forage grasses. Several species of delphacids exhibit high reproductive potentials and dispersal capabilities which allow them to track changes in favorable resources and therefore predispose them to be agricultural pests (Denno and Roderick 1990). *Nilaparvata lugens* (Stål), for example, a delphacid, caused more than US\$1.23 billion in losses to rice in South and Southeast Asia annually (Herdt 1987).

The first phylogenetic hypothesis concerning

^{*}To whom correspondence and reprint requests should be addressed. Tel: 886-2-27899512. Fax: 886-2-27858059. E-mail: scfhui@yahoo.com

the Fulgoroidea was proposed by Muir (1923). Thereafter, several such hypotheses were proposed based on adult or nymphal morphological characters (Asche 1988, Emeljanov 1991, Chen and Yang 1995). The Tettigometridae is usually considered the most-ancestral family in the Fulgoroidea since it exhibits many ancestral characters pertaining to the Cicadoidea (Muir 1923). Other popular relationships of the remaining fulgoroids are those proposed by Asche (1988) and Emeljanov (1991). Figure 1A shows a cladistic analysis based on 30 adult morphological characters. It suggests that the Cixiidae is a sister group to the Delphacidae, and both are more ancestral than the others which form several aligned lineages including 1 major group, but the affinity among these lineages is ambiguous (Asche 1988, Wilson et al. 1994). Asche's hypothesis was criticized by Emeljanov (1991) based on 50 morphological characters (Fig. 1B), and the Delphacidae has been suggested as being the next-most ancestral and not a sister group of the Cixiidae. Each of the following lineages in Asche's hypothesis is further divided in an unequal succession of dichotomies. Both hypotheses suggest that the Meenoplidae is a sister group to the Kinnaridae, and the Fulgoridae is a sister group to the Dictyopharidae. These commonly cited fulgoroid phylogenies have frequently been challenged. The ancestral taxon of the Tettigometridae is guestionable, and the primitive characters in tettigometrids are the result of convergence (Fig. 1C) (Bourgoin 1993). Further molecular evidence using 18S rDNA sequences confirms this controversial point (Bourgoin et al. 1997). Also, based on the ontogeny of metatarsal characters, Cheng and Yang (1995) suggested that the Delphacidae and Cixiidae constitute the most-advanced lineage of fulgoroids (Fig. 1D). Thus, the only conclusion generally accepted in fulgoroid systematics is that the Fulgoridae and Dictyopharidae are sister groups. Obviously, more studies of fulgoroid phylogeny using different characters are needed.

The 3' end sequences of the mitochondrial

Fig. 1. Hypotheses of phylogenetic relationships of fulgoroid families. (A) Phylogenies proposed by Asche (1988), (B) Emelyanov (1991), (C) Bourgoin et al. (1993 1997), and (D) Cheng and Yang (1995).

Family S	Subfamily or Tribe	Abbrev.	Species name	Accession no.
Achilidae	Plectoderini	Ach1	Betatropis formosana Matsumura	AF158028
	Rhotalini	Ach2	Rhotala formosana	AF158029
Cixiidae	Cixiinae	Cix2	Pentastiridius pachyceps (Matsumura)	AF158030
	Cixiinae	Cix3	Cixius circulus Tsaur et Hsu	AF158031
	Cixiinae	Cix4	Cixius inflatus Tsaur et Hsu	AF158032
	Cixiinae	Cix6	Betacixius ocellatus	AF158033
Delphacidae	Delphacinae	Del2	Nilaparvata lugens Stål	AF158034
	Delphacinae	Del3	Purohita taiwanensis Muir	AF158035
	Asiracinae	Del4	Ugyops tripunctatus (Kato)	AF158036
	Asiracinae	Del6	<i>Ugyops vittatus</i> (Matsumura) ^a	AF158037
	Delphacinae	Del7	Nilaparvata lugens Stål	AF158038
	Dlephacinae	Del8	Delphacinae sp.	AF158039
Derbidae	Zoraidini	Der1	Zoraida kotoshoensis Matsumura	AF158040
	Zoraidini	Der2	Diostrombus politus Uhler	AF158041
	Otiocerini	Der3	<i>Kamendaka aculeata</i> Yang et Wu	AF158042
	Rhotanini	Der4	Rhotana obaerata Yang et Wu	AF158043
	Otiocerini	Der9	<i>Kamendaka aculeata</i> Yang et Wu	AF158044
Dictyopharidae	Dictyopharinae	Dic1	Orthopagus splendens (Germar)	AF158045
	Dictyopharinae	Dic2	Raivuna sp.	AF158046
	Dictyopharinae	Dic3	Saigona gibbosa Matsumura	AF158047
	Dictyopharinae	Dic4	Orthopagus sp.ª	AF158048
Eurybrachidae	Platybrachinae	Eur1	Platybrachys decemmacula Walker	AF158049
Flatidae	Flatini	Fla1	Phylliana alba (Jacobi)	AF158050
	Flatini	Fla2	Mimophantia maritina Matsumura	AF158051
	Nephesini	Fla3	Geisha distinetissima (Walker)	AF158052
	Flatini	Fla4	Mimophantia maritina Matsumura	AF158053
	Flatoidinae	Fla5	Atracis sp.	AF158054
Fulgoridae	Aphaeninae	Ful2	Lycorma meliae Kato	AF158055
0	Aphaeninae	Ful3	Lycorma olivacea Kato	AF158056
	Fulgorinae	Ful4	Fulgora laternaria Linne'	AF158057
	Aphaeninae	Ful5	Lvcorma delicatula White ^a	AF158058
Issidae	Hemisphaerinae	lss1	Epyhemisphaerius tappanus (Matsumura)	AF158059
	Tonginae	lss2	Tonga botelensis Kato	AF158060
	Issinae	lss3	<i>Eusarima astuta</i> Chan et Yang	AF158061
	Caliscelinae	lss4	Mushva faciata Kato	AF158062
	Hemisphaerinae	lss5	Hemisphaerius formosus Melichar	AF158063
	Caliscelinae	lss6	Bruchomorpha oculata Newman	AF158064
	Caliscelinae	lss7	Bruchomorpha iocosa Stål	AF158065
	Caliscelinae	lss8	Aphelonema histrionica Stål	AF158066
	Hemisphaerinae	lss9	Gergithus rotundus Chan et Yang	AF158067
	Hemisphaerinae	lss10	Gergithus vavevamensis Hori	AF158068
	Tonginae	lss11	Tonga westwoodi (Signoret)a	AF158069
	Tonginae	lss12	Tonga westwoodi (Signoret) ^a	AF158070
	Issinae	lss14	Eusarima condensa	AF158071
Lophopidae	Lophopinae	Lop1	Lophops carinata (Kirby)	AF158072
Meenoplidae	Kermesiinae	Mee2	Nisia serrata Tsaur	AF158073
	Kermesiinae	Mee3	Nisia lansunensis Yang	AF158074
	Kermesiinae	Mee6	Nisia serrata Tsaur	AF158075
Nogodinidae	Varciini	Noa1	Mindura subfasciata kotoshonis Matsumura	AF158076
	Pisachini	Nog2	Pisacha naga Distant	AF158077
Ricaniidae		Ric1	Ricania fumosa (Walker)	AF158078
		Ric3	Ricanula pulverosa Stål	AF158079
		Ric4	Ricania simulans (Walker)	AF158080
		Ric5	Euricania ocella (Walker)	AF158081
Tettigometridae	Tettigometrinae	Tet2	Tettigometra sp.	AF158082
Tropiduchidae	Tambiniini	Tro1	Kallitaxila sinica (Walker)	AF158083
	Tambiniini	Tro2	Ossoides lineatus Bierman	AF158084
	Catulliini	Tro3	Catullia subtestacea Stål	AF158085
	Tambiniini	Tro4	Ossoides lineatus Bierman	AF158086

Table 1. Taxonomic status of fulgoroid taxa examined in this study with accession nos

^aNymph material.

16S rDNA gene have been shown to be useful for examining insect relationships from the genus level to the family level (Han and McPheron 1997, Yeh et al. 1998, Marini and Mantovani 2002, Hypša et al. 2002, Whitfield et al. 2002, Ribera et al. 2003). Mitochondrial 16S rDNA sequences have been used to infer relationships of 6 fulgoroid families of the Tropiduchidae group, and the results indicated that the 3'end sequences of the 16S rDNA are suitable for studying family relationships within the Fulgoroidea since nucleotide divergence increases with increasing taxonomic distance (Yeh et al. 1998). Nuclear 18S rDNA sequences have been used to evaluate 5 fulgoroid families and the affiliation of the Tettigometridae (Campbell et al. 1995, Bourgoin et al. 1997). Nucleotide sequences of the 18S rDNA gene may be too conserved for analysis of closely related families since nucleotide divergences between fulgoroid families are in the range of 1.5% to 6.3% (Campbell et al. 1995, Bourgoin et al. 1997). Also, too few families have been studied so far to obtain a general picture of fulgoroid phylogeny (Campbell et al. 1995, Bourgoin et al. 1997, Yeh et al. 1998).

In this work, sequences of the 16S rDNA gene of 59 populations within 53 species representing 15 families of fulgoroids were analyzed. The primary aims of this study were to use molecular characters to infer phylogenetic relationships within the Fulgoroidea as well as to address 2 issues that are still being debated: the phylogenetic position of the Tettigometridae, and whether Cixiidae and Delphacidae are ancestral taxa. Results from fulgoroid 16S rDNA sequences revealed that transversion substitutions are accumulating 3 times faster than transition substitutions. Phylogenetic analysis showed that members of the same family are grouped together with high bootstrap values, and that the Tettigometridae is not an ancestral taxon. Finally, the Achilidae, Cixiidae, Delphacidae, Lophopidae, and Meenoplidae were found to constitute the basal lineages, with the remaining 10 families comprising advanced lineages.

MATERIALS AND METHODS

Taxa examined

In total, 59 populations representing 53 species of 15 families of fulgoroids were included in this study (Table 1). Specimens of *Bruchomorpha oculata*, *B. jocosa*, and *Aphelonema histrionica* of

the Issidae were provided by M. R. Wilson (International Institute of Entomology, London). Six species selected for outgroup comparisons were *Mogannia* sp. (Cicadidae, Cica, GenBank accession no.: AF158087), *Cosmoscarta kotoensis* (Cercopidae, Cerc, accession no.: AF158088), and 4 species of the Cicadellidae: *Macrosteles fascifrons* (Cic1), *Exitianus exitiosus* (Cic2), *Mocuellus caprillus* (Cic3), and *Amblysellus grex* (Cic4) (Fang et al. 1993).

DNA extraction, amplification, and sequencing

Live insects were collected and preserved in 95% ethanol at -20°C. The entire insect body or the leg of a large specimen was homogenized in a glass homogenizer in 500 μ l digestion buffer that contained 100 mM Tris-Cl (pH 8.0), 10 mM EDTA, 100 mM NaCl, 0.5% SDS, 50 mM dithiothreitol, and 0.5 mg/ml proteinase K. The mixture was incubated at 50°C overnight, then extracted with phenol-chloroform (modified from Yeh et al. 1998). Extracted crude DNA was dissolved in 50 μ l TE buffer, and an aliquot of 10 μ l crude DNA was diluted 10-fold and used as the DNA template in the following amplification reaction.

The polymerase chain reaction (PCR) was employed to amplify a partial sequence of the mitochondrial 16S rDNA gene. The primers used to amplify the region were 5'-GCCTGTTTAT-CAAAAACAT-3' and 5'-CCGGTCTGAAC-TCAGATCA-3' that correspond to nucleotides 13416-13396 and 12866-12884, respectively, of the 16S rDNA gene of Drosophila yakuba (Clary and Wolstenholme 1985). Amplification was carried out for 39 cycles in a final volume of 100 µl containing 10 mM Tris-CI (pH 9.0), 50 mM KCI, 1.5 mM MgCl₂, 0.01% gelatin, 0.1% Triton-X100, 2 units of SuperTag polymerase (HT Biotechnology, Taiwan), 0.2 mM of each dNTP, 20 pmoles of each primer, and 2 µl DNA template with the following temperature profile: denaturation for 50 s at 95°C, annealing for 1 min at 50°C, and extension for 1 min at 72°C. Amplified DNA fragments were separated by agarose gel electrophoresis and extracted from the gel using the Nucleotrap Kit (Macherey-Nagel, Germany). The resulting DNA product was directly sequenced using the Cycling PCR Sequencing Kit (Perkin Elmer, USA), and 29 cycles were carried out with the following temperature profile: 40 s for denaturation at 95°C, annealing at 50°C, and extension at 72°C (modified from Yeh et al. 1998).

DNA analysis

Initial alignment of the mitochondrial sequences was conducted using the Pileup program of the GCG software package (available at http://bioinfo.nhri.org.tw), then manually refined based on the secondary structures of the 16S rRNA sequences (Davis et al. 1994, Fang et al. 1993, Kambhampati et al. 1996). The proportion of the nucleotide composition of each taxon was calculated using the MEGA version 3 program (Kumar et al. 2004) with a variety of genetic distances. To correct for AT-richness of the mtDNA sequences and different substitution patterns of transition (Ts) and transversion (Tv), the parameters of nucleotide composition and substitution types were used in the sequence divergence estimation. The pair-wise distance estimates were based on models that included the proportional, Kimura 2-parameter, and Tamura 3-parameter distance measures. A statistical analysis system (SAS Institute 2001) was used to test for significant correlations between nucleotide base compositions and substitution patterns of Ts and Tv.

Following the sequence variation estimation, neighbor-joining (NJ) and minimum evolution (ME) implemented in MEGA3 (Kumar et al. 2004) were used for the phylogenetic reconstruction. Different values of the parameter of α in the gamma distribution were used to determine the effect of heterogeneity in substitution rates among sites. Sites 40-45, 69-74, 185-186, 279-280, 290-291, 375-377, and 496-497 of the mitochondrial sequence data were excluded from the phylogenetic analysis because they could not be aligned unambiguously. Bootstrap analyses of 1000 replications were carried out on the trees inferred from the NJ and ME methods.

RESULTS

Sequence variation

When gaps were added to the alignment, 569 bases (Appendix I) were analyzed. Length variations of the partial 16S rDNA sequences among taxa ranged from 534 to 548 bases. Of the 569 bases examined, 375 bases (66%) were variable. The average nucleotide composition proportions (\pm SD) for the fulgoroid sequences were: G, 16.7 (\pm 1.2); A, 30.6 (\pm 2.5); T, 43.1 (\pm 1.7); and C, 9.6 (\pm 0.5). A bias towards adenine and thymine is consistent with the base composition of the corre-

sponding 16S rDNA region of other insects (Fang et al. 1993, Dowton and Austin 1994, Kambhampati 1995, Vogler and Pearson 1996, Han and McPheron 1997). Variable sites were not randomly distributed over the examined 16S rDNA region, and nucleotide divergence patterns in the 3' region of this gene showed that there are 3 highly variable regions (positions 40-74, 279-291, and 372-393; Appendix I). This result suggests that substitution patterns might be constrained by the function of the gene. The pattern of substitutions showed the greatest bias with $A \leftrightarrow T$ (11.5%), which was larger than changes of $A \leftrightarrow G$ (3.2%), T \leftrightarrow C (1.8%), and T \leftrightarrow G (2.3%), while changes of A \leftrightarrow C (0.5%) and G \leftrightarrow C (0.1%) were rare. However, correlation analysis of the base composition and substitution patterns using Kendall's tau (τ) (Kendall 1938) showed no significant relationship between base composition and substitution patterns ($\tau = 0.6$; $\tau^* = 0.6$, $\alpha = 0.1$).

The uncorrected nucleotide divergences within species were 0%-0.6%, those among species of a given genus were 1.7%-7.8%, and those among genera of the same tribe or subfamily of fulgorids were 8.1%-19.5%. Regression analysis of total substitutions (Tvs) versus transversions (Tv) and transitions (Ts) revealed that the mutation rate of Tv (with a slope of 0.74; $R^2 = 0.94$) was 3 times higher than that of Ts (with a slope of 0.26; $R^2 =$ 0.71), and substitutional saturation due to multiple hits was not yet observed in fulgoroids (Fig. 2). This information indicates that both Tv and Ts may provide phylogenetic information.

Phylogenetic analysis

Information on the differentiated nucleotide composition and Tv and Ts substitution patterns

Fig. 2. Regression analysis of total substitutions (Tvs) versus transitions (Ts, \circ) and transversions (Tv, \triangle) in the 16S rDNA sequences of fulgoroids.

allowed us to use the 3-parameter estimated distance model (Tamura 1992) in the NJ analysis, and the results are shown in figure 3A, for which the results of 1000 bootstrap replications are shown in the phylogenetic tree. Members of the same family were generally grouped together and received significant bootstrap possibilities of from 88% to 99%. The phylogenetic tree reveals the presence of 2 patterns of lineages. The basal lineages include 5 families of the Cixiidae, Delphacidae, Meenoplidae, Lophopidae, and Achilidae, and a close relationship is evident in the lineages of the Cixiidae and Delphacidae, although members Del4 and Del6 of the Delphacidae are cohesive to the Cixiidae lineage. After excluding the 5 basal families, the derived lineages can be divided into many groups and several independently aligned families: (i) Derbidae-Tropiduchidae; (ii) Fulgoridae-Dictyopharidae; (iii) Eurybrachidae-Ricaniidae, and the Flatidae, Nogodinidae, Tettigometridae, and Issidae. Bootstrap values suggest a robust relationship for each lineage of these groups. Furthermore, similar phylogenetic topologies were obtained when the data matrix was analyzed under other distance estimation models (Kimura 2-parameter with different values of α in the gamma distribution, Fig. 4a-d). These trees use family names since members of the same family consistently grouped together (Fig. 3). The trees support the 2 patterns of lineages but lack resolution among family groups in the advanced lineages.

The minimum evolution result constructed from the 3-parameter estimated distances exhibits the grouping pattern shown in figure 3B and is mostly consistent with that from the NJ analysis. The basal lineages include 5 families, and the relationship between the Delphacidae and Cixiidae is close, but it is necessary to further elucidate the paraphyletic resolution in the Delphacidae. Relationships among the Meenoplidae, Delphacidae-Cixiidae, Lophopidae, and Achilidae cannot be clearly resolved (Fig. 3B). Several groups among families in the derived lineages are revealed, including Derbidae-Tropiduchidae, Dictyopharidae-Fulgoridae, and Eurybrachidae-Ricaniidae, but relationships among the remaining families were poorly resolved. Furthermore, similar phylogenetic topologies were inferred in the minimum evolution analyses when using different values of α in the gamma distribution under the Kimura 2-parameter distance estimate model (Fig. 4e-h).

Fig. 3. Phylogeny of fulgoroids based on the partial mitochondrial 16S rDNA sequences by neighbor-joining (A) and minimum evolution (B) reconstructions based on the 3-parameter Tamura model. Bootstrap scores exceeding 80% from 1000 replications are given beneath the branches (not shown for branches below the family level). The black, white, and hatched rectangular boxes indicate clusters of the outgroups and two defined subdivided groups, respectively. The black lines indicate families whose phylogenetic relationships are ambiguous according to these analyses. The dotted-line box indicates advanced lineages. Taxa of the Issidae (I) are labeled in the subfamily category.

Fig. 4. Phylogenetic tree inferred from the partial mitochondrial 16S rDNA sequences by neighbor-joining (a-d) and minimum evolution (e-h) analyses based on the Kimura-2-parameter distance model. Correction for rate heterogeneity among sites with different values for the parameter α in the gamma distribution are shown, and bootstrap scores exceeding 80% from 1000 replications are given beneath the branches (not shown for branches below the family level). The trees use family names since members of the same family grouped together in figure 3.

However, monophyly of the Nogodinidae was not recovered by phylogenetic analysis, with Varciini (Nog1) and Pisachini (Nog2) falling into the Issidae and Flatidae, respectively. In addition, a non-monophyletic composition was seen in the family Issidae, particularly the subfamily Hemisphaerinae which formed a well-supported cluster with the family Tettigometridae.

DISCUSSION

The popular view among fulgoroid systematists that the Tettigometridae is the most-ancestral lineage among fulgoroids (Muir 1923, Asche 1988, Emeljanov 1991, Cheng and Yang 1995) was not supported by the 16S rDNA sequence data analyses. Average nucleotide sequence divergence between the tettigometrid and other fulgoroid families (19.3%) was small when compared to the 2 most-divergent families, i.e., the Meenoplidae (24.5%) and Delphacidae (23.8%). Also, phylogenetic analyses indicated that the Tettigometridae belongs to a more-advanced lineage of the Fulgoroidea and is grouped with the subfamily Hemisphaerinae of the Issidae. Based on the 18S rDNA sequence data, Bourgoin et al. (1997) indicated that the Tettigometridae is not a basal family in the Fulgoroidea, and they depicted it as a sister group of the Tropiduchidae. However, Bourgoin et al. also suggested that the sister taxon of tettigometrids still needed to be rigorously determined partly due to the weak sequence information in the 5' terminal region of 18S rDNA of the Tropiduchidae. Obviously, the sister group of Tettigometridae can be further clarified when additional numbers of related sequences are included.

Molecular phylogenies of planthoppers inferred from the 16S rDNA sequences indicate that fulgoroids are monophyletic. The relationships among families in these analyses are nearly identical: (i) The basal lineages are constituted by the Achilidae, Cixiidae-Delphacidae, Lophopidae, and Meenoplidae; (ii) Robust family groups of the Derbidae-Tropiduchidae, Dictyopharidae-Fulgoridae, and Eurybrachidae-Ricaniidae are aligned with other families in the advanced lineage; and (iii) The Issidae is a non-monophyletic group. It has been generally accepted that cixiids, delphacids, and meenoplids are relatively ancient families, but the relationships among these 3 families have not been resolved. For example, it was proposed that cixiids and delphacids are sister groups and are more ancestral than meenoplids based on a

cladistic analysis (Asche 1988) with delphacids being more ancestral than cixiids, and cixiids more ancestral than meenoplids (Emeljanov 1991); furthermore, 18S rDNA sequence analysis showed that cixiids and delphacids are sister groups and are more ancestral than the other 5 fulgoroid families (Bourgoin et al. 1997). However, more-recent relationship reconstruction using cytochrome b (COB) sequences suggested that meenoplids are the most-ancestral family within the fulgoroids (Yeh et al. 1998). Phylogenetic inferences in these analyses indicated that the Cixiidae has a close affinity to the Delphacidae and constitutes one of the ancestral lineages within the fulgoroids.

Additional evidence from fossil records supports these basal lineages. The first fossil known of an extant member of the Fulgoroidea is of the Cixiidae, which appears at the beginning of the Jurassic period (210 Ma) (Shcherbakov 1996), and the next-oldest fossil is of the Achilidae (135 Ma) (Hamilton 1990). Most of the other fulgoroid families radiated out in the Cenozoic period (Shcherbakov 1993). However, sequence analyses revealed an unexpected phylogenetic position of the Lophopidae, which had been considered to be in the advanced lineage based on morphological characters (Asche 1988, Emeljanov 1991, Chen and Yang 1995). Soulier et al. (1996) pointed out that the Lophopidae is a paraphyletic family. Molecular results may have been biased from the sample size or the poor alignment of the AT-rich 16S rDNA. More than 1 taxon of lophopids or an additional sequence, such as 18S rDNA, must necessarily be included to help clarify the evolutionary relationship of the lophopids.

Excluding the 5 families (Achilidae, Cixiidae, Delphacidae, Lophopidae, and Meenoplidae), phylogenetic relationships confirm 1 major derived lineage although several phylogenetic relationships within it are poorly resolved. This polytomous result was possibly caused by the poor alignment of the 16S rDNA AT-rich regions or by the rapid radiation of fulgoroid families in the Cenozoic period (Shcherbakov 1993). However, some reliable conclusions can be drawn from the phylogenetic analyses. Molecular data confirm a close relationship between the Dictyopharidae and Fulgoridae, and depict the Derbidae as a sister group of the Tropiduchidae, and the Ricaniidae as a sister group to the Eubrybrachidae. Characters of female genitalia suggest that the family Achilidae has a close affinity to the Derbidae (Fig. 1C). However, according to the adult and nymphal morphological characters (Asche 1988, Chen and

Yang 1995), the phylogenetic affinity is ambiguous between the Achilidae and Derbidae. Asche (1988) proposed a polytomous relationship for the following 7 families: Eurybrachidae, Flatidae, Issidae, Lophopidae, Nogodinidae, Ricaniidae, and Tropiduchidae. Nymphal characters also reveal a polytomous relationship of the Eurybrachidae, Gengidae, Hypothonellidae, Lophopidae, and Ricaniidae (Chen and Yang 1995). Sequence data in this study further confirm the relationship of the Eurybrachidae and Ricaniidae, although the positions of the remaining Flatidae, Issidae, and Nogodinidae cannot be precisely defined. The non-monophyletic resolution of the Issidae and Nogodinidae highlights the difficulty in defining their phylogenetic position. It has been proposed that the Issidae is a nonhomogenous group (Yeh et al. 1998, Emeljanov 1999, Gnezdilov 2003), although many key morphological characters such as the tegmina, wing length, clavus, corium, and aedeagus shape in issids can effectively define the subfamily classification (Chan and Yang 1994). A revision of the Caliscelidae was described by Emeljanov (1999), whereas efficient molecular sequence is needed to delimitate the category of issid subfamilies. Furthermore, according to the characters of the tegmina, more than 10 species of issids were revised into the Nogodinidae (Fennah 1984). Analyses of 16S rDNA sequences elucidate many phylogenetic relationships within the Fulgoroidea, although many questions remain unresolved and more research effort is needed.

Acknowledgments: This work was supported by Academia Sinica and the National Science Council (NSC-85-2321-B005-016 and NSC-86-2313-B005-072) of the R.O.C.

REFERENCES

- Asche M. 1988. Preliminary thoughts on the phylogeny of Fulgoromorpha (Homoptera: Auchenorrhyncha). *In* Proceedings of the 6th International Auchen. Meet. Turin, Italy: Univ. of Turin Press, pp. 47-53.
- Bourgoin T. 1993. Female genitalia in Fulgoromorpha (Insecta, Hemiptera): morphological and phylogenetical data. Ann. Soc. Entomol. Fr. **29:** 225-244.
- Bourgoin T, JD Steffen-Campbell, BC Campbell. 1997. Molecular phylogeny of Fulgoromorpha (Insecta, Hemiptera, Auchenorrhyncha). The enigmatic Tettigometridae: evolutionary affiliations and historical biogeography. Cladistics 13: 207-224.
- Campbell BC, JD Steffen-Campbell, JT Sorensen, RJ Gill. 1995. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rDNA nucleotide sequences. Syst.

Entomol. 20: 175-194.

- Chan ML, CT Yang. 1994. Issidae of Taiwan (Homoptera: Fulgoroidea). Taipei: Chen Chung Book Press. 168 pp.
- Chen S, CT Yang. 1995. The metatarsi of the Fulgoroidea (Homoptera: Auchenorrhyncha). Chinese J. Entomol. **15**: 257-269.
- Clary DO, DR Wolstenholme. 1985. The mitochondrial DNA molecule of *Drosophila yakuba*: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. **22**: 252-271.
- Davis RE, TJ Kelly, EP Master, BS Thyagaraja, CA Rote, RB Imberski. 1994. Complete base sequence for the mitochondrial large subunit ribosomal RNA of the gypsy moth *Lymantria dispar* (L.). Insect Mol. Biol. **3:** 219-228.
- Denno RF, GK Roderick. 1990. Population biology of planthoppers. Annu. Rev. Entomol. **35**: 489-520.
- Dowton M, AD Austin. 1994. Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. Proc. Natl. Acad. Sci. USA 91: 9911-9915.
- Emeljanov AF. 1991. An attempt to construct a phylogenetic tree for planthoppers (Homoptera, *Cicadina*). Entomol. Rev. **70:** 24-28.
- Emeljanov AF. 1999. Notes on delimitation of families of the Issidae group with description of a new species of Caliscelidae belonging to a new genus and tribe (Homoptera, Fulgoroidea). Zoosyst. Ross. **8:** 61-72.
- Fang Q, WC Black IV, HD Blocker, RF Whitcomb. 1993. A phylogeny of New World *Deltocephalus*-like leafhopper genera based on mitochondrial 16S ribosomal DNA sequences. Mol. Phylogenet. Evol. 2: 119-131.
- Fennah RG. 1984. Revisionary notes on the classification of the Nogodinidae (Homoptera, Fulgoroidea), with descriptions of a new genus and a new species. Entomol. Mon. Mag. **120:** 81-86.
- Gnezdilov VM. 2003. A new tribe of the family Issidae with comments on the family as a whole (Homoptera: Cicadina). Zoosyst. Ross. **11**: 305-309.
- Hamilton KGA. 1990. Homoptera: insects from the Santana formation, Lower Cretaceous, of Brazil. Bull. Am. Mus. Nat. Hist. **195:** 82-122.
- Han HY, BA McPheron. 1997. Molecular phylogenetic study of Tephritidae (Insecta: Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Mol. Phylogenet. Evol. 7: 17-32.
- Herdt RW. 1987. Equity consideration in setting priorities for third world rice biotechnology research. Development Seeds Change **4:** 19-24.
- Hypša V, DF Tietz, J Zrzavy, RO Rego, C Galvao, J Jurberg. 2002. Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Mol. Phylogenet Evol. 23: 447-457.
- Kambhampati S. 1995. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 92: 2017-2020.
- Kambhampati S, KM Kjer, BL Thorne. 1996. Phylogenetic relationships among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. Insect Mol. Biol. **5:** 229-238.
- Kendall MG. 1938. A new measure of rank correlation. Biometrika **30:** 81-93.
- Kumar S, K Tamura, M Nei. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163.

- Marini M, B Mantovani. 2002. Molecular relationships among European samples of Reticulitermes (Isoptera, Rhinotermitidae). Mol. Phylogenet Evol. **22:** 454-459.
- Muir F. 1923. On the classification of the Fulgoroidea (Hemiptera). Proc. Hawaiian Entomol. Soc. **5:** 205-247.
- O'Brien LB, SW Wilson. 1985. Planthopper systematics and external morphology. *In* LR Nault, JG Rodriguez, eds. The leafhoppers and planthoppers. New York: Wiley, pp. 61-102.
- Ribera I, DT Bilton, AP Vogler. 2003. Mitochondrial DNA phylogeography and population history of Meladema diving beetles on the Atlantic Islands and in the Mediterranean basin (Coleoptera, Dytiscidae). Mol. Ecol. **12:** 153-167.
- SAS Institute. 2001. PROC user's manual, version 6th. Cary, NC: SAS Institute.
- Shcherbakov DE. 1993. Geological history of Auchenorhyncha. *In* Proceedings of the 8th International Auchen Congress. Delphi, Greece. pp. 3-4.
- Shcherbakov DE. 1996. Origon and evolution of the Auchenorrhyncha as shown by the fossil record. *In* T Say, ed. Studies on Hemiptera phylogeny. Lanham, Entomol. Soc. Am., pp. 31-45.
- Soulier AD, T Bourgoin, M Wilson. 1996. Are the Lophopidae a paraphyletic taxon? Proceedings of the 20th Congress of Entomology, Florence, Italy, 25-31 August. p. 485.
- Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion

and G + C-content biases. Mol. Biol. Evol. 9: 678-687.

- Vogler AP, DL Pearson. 1996. A molecular phylogeny of the tiger beetles (Cicindelidae): congruence of mitochondrial and nuclear rDNA data sets. Mol. Phylogenet. Evol. 6: 321-338.
- Whitfield JB, P Mardulyn, AD Austin, M Dowton. 2002. Phylogenetic relationships among microgastrine braconid wasp genera based on data from the 16S, COI, and 28S genes and morphology. Syst. Entomol. **27:** 337-359.
- Wilson SW, C Mitter, RF Denno, MR Wilson. 1994. Evolutionary patterns of hostplant use by delphacid planthoppers and their relatives. *In* RF Denno, TJ Perfect, eds. Planthoppers: their ecology and management. Chapman and Hall Press, pp. 7-113.
- Wilson SW, LB O'Brien. 1987. A survey of planthopper pests of economically important plants (Homoptera: Fulgoroidea). *In* MR Wilson, LR Nault, eds. Proceedings of the 2nd International Workshop on Biotaxonomy, Classification, and Biology of Leafhoppers and Planthoppers (Auchenorrhyncha) of Economic Importance. London: Commonwealth Institute of Entomology, pp. 343-360.
- Yeh WB, CT Yang, CF Hui. 1998. Phylogenetic relationships of the Tropiduchidae-group (Homoptera: Fulgoroidea) of planthoppers inferred through nucleotide sequences. Zool. Stud. **37**: 45-55.

APPENDIX I: Alignment of the fulgoroid 16S rDNA sequences. Secondary structure domains in the last line are based on previous models (see text)

													81
Ful2	CGCC TGT	TT ATCA/	AAACA	TGT	CCTT	TTGGAATTTATTT	AAGG	ΤT	T-GGCC	Т	GCTCAATGA-	T	-TTAAAT
Fu13	CGCC TGT	T ATCA	AAACA	TGT	CCTT	TTGGAATTTATTT	AAGG	ŤΤ	TGGGCC	Ť.	GCTCAATGA-	Ť	-TTAAAT
Full	CGCC TGT	T ATCA		TGT	CTTC	CAGGGTTTAATTG	GAGG	ŤŤ	T_GGOC	Ť	GCTCAATGCA	Ť	AGTAAAT
Eu14	COCC TOT			TCT	COTT	TTCTAATTTATT	MCC	TT	т слос	T T	CCTCA ATCA	т	TTAAT
Dial	CCCC TOT			TOT	TOTT		AAOO	TA	T AACC	T T	COTCAATOA-	1 T	
DICI	CGCC TGT	LI AACAA	AAACA	. IUI	TUT	- 1AU1U111A11A	AAGA	IA	I-AAUU	1	GUICAAIGAI	1	TTTAAAT
Dic2	CGCC TGT	T ATCA	AAACA	ICI	CITT	-TIGGITTTATTT			A-AACC	T	GCICAAIGAA	A	TTTAAAT
Dic3	???? ???	?? ?????	2 ?????	???	????	???????????????????????????????????????	????	??	??????	?	???????????????????????????????????????	???????	???????
Dic4	CGCC TGT	IT ATCAA	AAACA	TCT	TCIT	-TAGTGTTTATTA	AAGA	ΤA	T-AACC	Т	GCTCAATGAT	T	TTTAAAT
Flal	TGCC TGT	IT AACA/	AAACA	TGT	CTIT	- TAGTTTTTATTT	AAAG	TC	T-AACC	Т	GCTCAATGAT	-TTA	TTTAAAT
F1a2	CGCC TGT	T ATCA	AAACA	TGT	CTTT	- TAGAATTTGTTA	AAAG	ΤT	G-ATTC	Т	GCTCAATGAT	AA	TTTAAAT
F1a3	CGCC TGT	T ATCA	AAACA	TGT	CTTT	-TAGGTTTTTATTT	AAAG	TC	T-AACC	T	GCTCAATGAA	G	TTTAAAT
Flad	CGCC TGT	T ATCA		TGT	CTTT	TAGAATTTGTTA	AAAG	TT	GATTC	Ť.	GCTCAATGAT	A A	TTTAAAT
Do 19	CCCC TCT			TTTT	CTTT		AACC	TT	C CCCC	T T	COTCAATGAA	лл Т	
Delo		T ATCAP			CITI		AAGG	TC		T	COTOLATOAA	I TA	TTTAAAI
NogI	CGCC IGI	LI AICAA	AAACA	. IUI	CIII		AAAG	IU	I-AIUU	I m	GUICAAIGAI	-1A	TTTAAAT
Nog2	CGCC TGT	IT ATCA	A AAACA	TGI	CITT	- TAGGTTTT - TTA	AAAG	TC	T-GGCC	T	GCICAAIGAA	- TAT	TTTAAAT
Ach1	CGCC TTG	IT ATCA/	AAACA	TGT	TITT	-TIGTITATITATIT	AAGA	ΤT	G-GCCC	Т	GCTCAATGAT	A	TTTAAAT
Ach2	CGCC TIG	IT ATCA∤	A AAACA	TGG	TTTT	-TAGTTTATATTA	AAGA	TC	A-GACC	Т	GCTCAATGAA	- TAT	TTTAAAT
Der1	CGCC TGT	IT ATCAA	AAACA	TGT	CTTT	- TTGATTTTATTT	AAGG	ΤT	T-TACC	Т	GCTCAATGAT	T	TTTAAAT
Der2	CGCC TGT	T ATCA	AAACA	TGT	TATT	- TTGATTTTATATT	TAAT	AT	TTAACC	Т	GCTCAATGAT	AA -	TTTAAAT
Der3	CGCC TGT	T ATCA/	AAACA	TGT	TTTT	- TTGTTTTTTTAA	AAAG	AT	TAAATC	T	GCTCAATGAA	A-TAAT	ATTAAAT
DerA	CGCC TGT	T ATCA		TGG	TTTT		ΔΔΔΔ	ΔT	T_TGGC	Ť	GCCCAATGA_	- T- T	-CTAAAT
Dor0	CCCC TCT			TCT	TTTT	TTTTTTTA	AAAG	AT AT		T.	CCTCAATCAA	17T1 AT	
DC19		T ATCAR		TUL .			CATC		TAAAIC	T	COTOLATOAA	ATTAAT	TITAAAI
Irol	CGCC IGI	LI AICAA	AAACA	101	CUIC	- 1 IUATITIATAT	GAIG	II	I-AAUU	I	GUICAAIGAI	IA	IIIAAAI
Tro2	CGCC TGT	T ATCA	A AAACA	IGI	CITC	-TIGATTTATTT	GAAG	TC	T-GGCC	T	GCICAAIGAI	1A	ATTAAAT
Tro3	CGCC TGT	IT ATCAA	A AAACA	TCT	CTIC	- ATGAATTTATTT	GAAG	TC	A-GGCC	Т	GCTCAATGAG	T	TTTAAAT
Tro4	CGCC TGT	IT ATCAA	A AAACA	T-T	CTTA	GGTTTTATTT	GAAG	TC	T-A-CC	Т	GCTCAATGAT	TA	ATTAAAT
Ricl	???? ???	22 22221	??????	???	????	???????????????????????????????????????	????	??	??????	?	???????????????????????????????????????	??????	????????
Ric3	CGCC TGT	TT ATCA/	AAACA	TGT	CTTT	-AAGTTTATATTT	AAAG	TC	T-GACC	Т	GCTCAATGAT	TA-	TTTAAAT
Ric4	CGCC TGT	IT ATCAA	AAACA	TGT	CTTT	- AAGTTTTTTTTTTTT	AAAG	TC	T-GGCC	Т	GCTCAATGAG	- AAT	TTTAAAT
Ric5	CGCC TGT	T ATCA		TGT	CCTT	-GAGAGTTTATTT	AAGG	ŤČ	T-GTCC	Ť.	GCTCAATGAA	TTTTTTT	TTTAAAT
Eurl	CGCC TGT	TT ATCA		TGT	CTTT	-GAGAGTTTATTT	AAAG	TT	T_GTCC	Ť	GCTCAATGAA	- TTTA -	TTTAAAT
Lon1	CACC TGT			TYP	CTTT	AACATTTATATTT	AAAG	TC		Ť	GCTCAATGAA	-111//- T	TTTAAAT
Tat1	CACC TOT			TOT .	CTTT		AAAO	TC	A AACC	T T	COTCAATCAA		TTTAAAT
Tetz		T ATCAR		TOT	CITI		AAAG	TC	A-AACC	I T	GOTOACTOAT	-AAII-	
1881	CGCC IGI	IT AICAA	AAACA	. IUI	CIII	-GAGAGIIIAIII	AAGG	IC	I-GAUC	I	GUICAUIGAI	111	ATTAAAT
1885	CGCC TGT	T ATCA	A AAACA	IGI	CITT	-AAGAGITTATTT	AAAG	IC	T-GGCC	1	GCICAAIGAA	TT	TTTAAAT
1889	CGCC TGT	IT ATCA	A AAACA	TGI	CITT	-GAGGGTTTATTT	AAAG	TC	T-GACC	Т	GCTCAGIGAT	- TAA	ATTAAAT
Iss10	CGCC TGT	IT ATCAA	A AAACA	TGT	CTTT	- AAGTTGTTTATTT	AAAG	TC	T-GGCC	Т	GCTCAGTGAT	TTTA	ATTAAAT
Iss2	CGCC TGT	IT AACA/	AAACA	TGT	CTTG	-TAGATTTTTTTA	TAAG	TC	T-GTCC	Т	GCTCAGTGAT	T	TTTAAAT
Issll	CGCC TGT	IT ATCA/	A AAACA	TGT	CTTG	-TAGTTTTTTTTA	TAAG	TC	T-ATCC	Т	GCTCAGTGAT	T	TTTAAAT
Iss12	CGCC TGT	TT ATCAA	AAACA	TGT	CTTG	-TAGTTTTTTTTA	TAAG	TC	T-ATCC	Т	GCTCAGTGAT	T	TTTAAAT
Iss3	CGCC TGT	T AACAA	AAACA	TGT	CTTT	-TAGTTTTTTATTT	AAGG	TC	A - AGCC	Т	GCTCAATGAT	ATATT-	TTTAAAT
1000	CGCC TGT	T AACAA		TGT	CCTT	-TAGTTTTTTTTT	AAGG	ΤČ	T_AGOC	Ť	GCTCAATGAT	GTTAA	TTTAAAT
Leed	CACC TGT			TGT	CTTA		TAAG	TT	ТАЛОС	Ť	GCTCAATGAA	TTAT	TTTAAAT
1554	CACC TOT	T ATCAR		TOT .	CTTA		TAAC	TC	T-AACC	T.	COTCAATUAA	TIMI	TTTAAAT
1880	COCC TOT	LT ATCAA		TUL.	CITA		TAAU	TC	T-AGUU	I T	OCTCAATGAA		TTTAAAT
1557	CUCL IUI	LI AICAA	AAACA	. IUI	CITA		TAUG	IU	I-AUUU	T.	OCTOA ITCAA I UAA	11Al	TTTAAAT
1888	WW TGT	LT ATCA	AAACA	TGI	CITG	-IAGITITITITA	TAAG	IU	1-ATCC	T	GUICAAIGAA	GIGATT	TTTAAAT
C1x2	CGCC TGT	T ATCA	A AAACA	TGT	TCTT	-TAGATITATTA	AAGA	TT	T-AGCC	Т	GCICIATGAT	- 1 I AA -	ATTAAAT
Cix3	CGCC TGT	IT ATCAA	A AAACA	TGT	TCTT	-TAGATITTTTA	AAGG	TT	T-AACC	A	GCTCTATGAT	GA	TTTAAAT
Cix4	CGCC TGT	FT ATCA∤	AAACA	TGT	TCTT	-TAGATTTTTTTA	AAGG	ΤT	T-AACC	Т	GCTCTATGAT	TA	TTTAAAT
Cix6	CGCC TGT	TT ATCA/	AAACA	TGT	CTIT	-TAGATTTTTTTA	AAGG	ΤT	T-AACC	Т	GCTCTATGAA	TA	TTTAAAT
Del2	CGCC TGT	IT ATCAA	AAACA	TTT	CTTT	-CAGGTATTATATTTATTG	AAAG	TΤ	T-AACC	Т	GCTCAATGAA	-TT-T-	TTTAAAT
Del3	TGAC TGT	T ATCA	AAACA	TTT	TCTT	-TTGAT-TTATTTAA	AAGG	TÂ	A-AACC	Ŧ	GCTCACTGAA	-TTTT-	TTTAAAT
Del4	TGCC TGT			TGT	TCTT	-TAGGTTTTATTT	AAGG	TC	T_CGCC	τ.	GCTCAATGAT	-TGAT	ΤΤΤΔΔΔΤ
Del6	TGCC TGT			TCT	TOTT	TACCTTTTATT	AACC	TT	T CCCC	Ť	GCTCAATGAT	-10/11- TAAT	TTTAAAT
Del7	CCCC TOT	LI AICAP		101. TTTT	CTTT		DDAA	11 TT		т Т	COTOLATOAL	TT T	TTTAAAI
	0000 707	LI AICAA	AAACA		CITI	-CAUDIALIAIAIAIIIAIIU	AAAU	11 TC	T-AAUC	1 T	COTCAATGAA	-11-1-	TTTAAAT
гтар	UUU IGT	LI ATCAP	AAACA	101	CIII	-110111A1A111	AAAU	IU	I-UAUU	1 T	UCICAAIUAA	-11A	TTTAAAT
Mee2	IGAA IGT	T ATCA	AAACA	111	CITC	-AIGGITTTTTT	GAAG	TA	1-1000	T	GCCCTATGAA	-TTA-T	TTTAAAT
Mee3	TGAA TGT	LT ATCAA	A AAACA	TTT	CTTC	-AIGTTTTTTTTTTT	GAAG	TA	T-TCCC	Т	GCTCTATGAA	-TTAGT	TTTAAAT
Mee6	TGAA TGT	IT ATCAA	A AAACA	TTT	CTTC	-ATGGGTTTTTTTT	GAAG	TA	T-TCCC	Т	GCCCTATGAA	-TTA-T	TTTAAAT
Cerc	CGCC TGT	IT ATCAA	A AAACA	TGT	TITT	-TAGTITITTATTA	AAAA	AT	TTAATC	Т	GCCCAATGAT	- TTT	TTTTAAT
Cica	CGCC TGT	TT ATCAA	AAACA	TGT	CTTT	-TAGATTATATTA	AAAG	TC	T-AATC	Т	GCCCAATGAT	T	TTTTAAT
Cic1	CGCC TGT	T AACA	AAACA	TTT	CTTT	-TTGATTATATAA	AAAG	TA	T-TTTC	Т	GCCCAATGAT	ATTTA -	TTTAAAT
Cic?	CGCC TGT	T AACA4	AAACA	TTT	CTTT	-TTGCTTTTATA	AAAG	GT	G-AGTC	Ť	GCCCTATGGG	AT	ACTAAAT
Cic3	CGCC TGT	T AACA!		TTT	CTTT	-TTGTGTGTGTTA	AAAG	GT	ATCTTC	Ť	GCCCTATGAT	-TATT-	ΑΤΤΑΔΑΤ
CicA	CGCC TGT	$T \Delta \Delta C \Lambda J$		TTT	CTTT		AAAG	ΤΔ	C_TTTC	Ť	GCCCTATGGT	TTGT	ΤΩΤΔΔΔΤ
0104	-65	\sim	$\sim -65h$		2660	~	~66h	~	<67º >	T	<68a >	<pre></pre>	68h
	<u 1<="" td=""><td></td><td>- \() 102</td><td>~~></td><td>NUUZ.</td><td><pre>></pre></td><td>SOUL.</td><td>\sim</td><td><u>\U10-></u></td><td>-</td><td></td><td><></td><td><</td></u>		- \() 102	~~>	NUUZ.	<pre>></pre>	SOUL.	\sim	<u>\U10-></u>	-		<>	<

APPENDIX I : (Cont.)

															1	58
Ful2	AGC	CGCAGT	ATTTTG	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTT	GA	CG
Fu13	AGC	CGCAGT	ATTTTG	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTT	GA (CG
Ful4	AGC	CGCAGT	ATTTTG	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GGGGTC	TAGGATGAAG	GGTTA	GA (CG
Fu15	AGC	CGCAGT	ATTTTG	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTT	GA (CG
Dicl	AGC	CGCAGT	AATTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	GA (CG
Dic2	AGC	CGCGGT	ΑΑΑΤΤΑ	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	AA I	ĊĠ
Dic3	2GC	CGCGGT	ΑΤΤΤΤΑ	ACTGTG	СТА	AGG	TAGCATAATA	ATT	Α	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	AA I	ČĞ
Dic4	AGC	CGCAGT	ΑΑΤΤΤΑ	ACTIGTIC	CTA	AGG	TAGCATAATA	ATT	A	GICTIT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	GA I	ĊĠ
Flal	AGC	CGCAGT	ATATTG	ACTIGTG	CGA	AGG.	ΤΔGCΔΤΔΔΤΔ	ATT	Δ	GTCTTT	TAATT	GAGGTC	TGGTATGAAT	GGTTG	GA I	$C\Delta$
$F1_{9}2$	AGC	CCCAGT	ATTTA	ACTICITC	CAA	AGG	ТАССАТААТА	ATT	Δ	GTCTTT	TAATT	GACCTC	TCGAATGAAT	GATTT	GA I	CC.
Fla2	AGC	CGCAGT	ATATTG	ACTOTO	CAA	AGG	TAGCATAATA		Λ	GTCTTT	TAATT	GAGGTC	TGGTATGAAT	GGTTA	GA I	CC .
Flad	ACC	CCCACT	ATATIO	ACTOTO	CAA	AGG	TACCATAATA	ATT	Λ Λ	CTCTTT	TAATT	GACCTC	TCGAATGAAT	GATTT	GA I	na na
Do19	AUC	TOCACT	ATTTTA	ACTOTO	CTA	ACC	TAUCATAATA	ATT	A	CTCTTT	TAATT	CACCTC	TOCATCAT	COTT		
Negl	ACC	COCCCT	ATTTTA	ACTOTA	CIA	ACC	TAUCATAATA		- <u>A</u>	CTCTTT	TAATT	CACCTC	TCCAATCAAT	COTTO		CA CC
Nog1 Nag2	AUC	CCCACT	ATTITIC	ACTOTO	CAA	AGG	TAUCATAATA	ATT	A	CTCTT	TAATT	CACCTC	TOUAATUAAT	COTTA		00
NOgZ	AGC	CCCCCT	ATTIC	ACTOTO	CIA	AGG	TAGCATAATA	ATT	A	CTOTT	TAATT	CACCTC	TCCLATCAAT	COCTT	AA I	
ACHI	AGC	COCCOT	AATTTA	ACIGIG	CAA	AUU	TAGCATAATA	ATT	A	GIUITI	TAATT	UAGUIU	TOGAATGAAT	COTT	GA I	CA
Acn2	AGC	CGCGGI	AACITA	ACIGIG	CAA	AGG	TAGCATAATA	AII	A	GICITI	TAATT	GAGGIU	IGGAAIGAAI	GUITA	GA I	CA
Derl	AGC	CGCAGT	ATTTIG	ACIGIG	CTA	AGG	TAGCATAATA	ATT	A	GICITT	TAATT	GAGGIC	TGGAATGAAT	GGTTA	GA I	CG
Der2	AGC	CGCGGT	ATTTIG	ACCGIG	CTA	AGG	TAGCATAATA	ATT	A	GICITT	TAATT	GAGGIC	TGGAATGAAA	GGTTG	GA I	CG .
Der3	AGC	CGCGGT	ATATIG	ACCGIG	CAA	AGG	TAGCATAATA	ATT	A	GICIT	TAATT	GAGGIC	TIGAATGAAT	GATTT	GA I	CG
Der4	AGC	CGCAGG	ΑΑΤΓΓΑ	ACIGIA	CAA	AGG	TAGCATAATA	ATT	A	GICITI	TAATT	TGAGIC	TIGTATGAAT	GGTTT	GA I	CG
Der9	AGC	CGCGGT	ATATTG	ACCGTG	CAA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TTGAATGAAT	GATTT	GA (CG
Trol	AGC	CGCGGT	AATTTA	ACTGTG	CAA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	GA	CG
Tro2	AGC	CGCGGT	AATTTA	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TAGAATGAAT	GGTTG	GA (CG
Tro3	AGC	CGCGGT	AATTTA	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GGGGTC	TTGAATGAAT	GGTTA	GA	CG
Tro4	AGC	CGCGGT	AATTTA	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TAGAATGAAT	GGTTG	GG	CG
Ricl	???	??????	??????	?????G	CAA	AGG	TAGCATAGTA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTA	GA (CG
Ric3	AGC	CGCAGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGTATGAAT	GGTTG	GA (CG
Ric4	AGC	CGCGGT	ATTTTG	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTA	GA (CG
Ric5	AGC	CGCGGT	ATTTTA	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGTATGAAT	GGTTA	GA (CG
Eurl	AGC	CGCAGT	ATTTTG	ACTGTG	CAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAA	GGTTA	GA (CG
Lopl	AGC	CGCAGT	ATTTTA	ACTGTG	TAA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTG	AA '	TG
Tet2	AGC	CGCAGT	ATTTTA	ACTATA	CAA	AGG	TAGCATAATC	ATT	A	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTA	AA	CG
Iss1	AGC	CGCGGT	ATATTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TAGAATGAAT	GGTTG	AA I	ĊĠ
Lss5	AGC	CGCGGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TGGGATGAAT	GGTTG	AA I	ĊĠ
Lss9	AGC	CGCGGT	ATATTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GGGGTC	TAGAATGAAT	GGTTA	AA I	ĊĠ
Iss10	AGC	CGCGGT	ATATTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TGGTATGAAT	GGTTA	AA I	CG
Iss2	AGC	CGCAGT	ATTTTA	ACTGTG	ĊTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGATT	CA	ĊĠ
Iss11	AGC	CGCAGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGATT	CA	CG
Iss12	AGC	CGCAGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGATT	CA	CG
Lss3	AGC	CGCGGT	AAATTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	GAGGTC	TGGGATGAAT	GGTTA	GA I	ĊĠ
Iss14	AGC	CGCGGT	ATTTTG	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAGGTC	TGGAATGAAT	GGTTA	AA I	CG
Iss4	AGC	CGCAGT	AAATTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	AAGGTC	TTGAATGAAT	GGTTG	GA '	TG
Iss6	AGC	CGCAGT	AATTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAAGTC	TTGAATGAAA	GGTTG	GA '	TG
Iss7	AGC	CGCAGT	AATTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTCTTT	TAATT	GAAGTC	TTGAATGAAA	GGTTG	GA '	TG
Iss8	AGC	CGCAGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTTT	TAATT	AAAGTC	TTGAATGAAT	GGTTG	GG '	TG
Cix2	GGC	CGCAGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	А	GTTTCT	TAATT	AGGATC	TGGAATGAAT	GGTTG	GA (CA
Cix3	GGC	CGCGGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTCT	TAATT	AGGGTC	TTGAATGAAT	GGTTG	GA I	CG
Cix4	GGC	CGCGGT	ATTTTA	ACTGTG	CTA	AGG	TAGCATAATA	ATT	A	GTCTCT	TAATT	GGGGTC	TTGAATGAAT	GGTTG	AA I	ĊĞ
Cix6	GGC	CGCGGT	ΑΤΤΤΤΑ	ACTGTG	СТА	AGG	TAGCATAATA	ATT	A	GTCTCT	TAATT	AGGGTC	TTGAATGAAT	GGTTG	GA I	CG
Del2	AGC	TGCAGT	ΑΑΤΤΤΑ	ACTIGTA	CAA	AGG	TAGCATAGTA	ATT	A	GTCTTT	TAATT	GAGGTC	TAGAATGAAT	GGTTT	AA I	CA
Del3	AGC	CGCAGT	ΑΤΤΤΤΑ	ACTIGTA	СТА	AGG	ТАССАТААТА	ATT	A	GICTIT	TAATT	GAGGTC	TGGAATGAAT	GGTTT	AA I	CA
Del4	GGC	CGCGGT	ΔΑΤΤΤΑ	ACTGTG	CTA	AGG	TAGCGTGATA	ATT	Δ	GTCTTT	TAATT	GAGGTC	TTGTATGAAT	GGTTG	GA I	CA
Del6	AGC	CGCGGT	ΔΔΤΤΤΔ	ACTGTG	CTA	AGG	TAGCGTAATA	ATT	Δ	GTCTTT	TAATT	GGGGTC	TTGTATGAAT	GGTTG	GA I	CA
Del7	AGC	TGCAGT	ΔΔΤΤΤΔ	ACTGTA	$C\Delta\Delta$	AGG.	TAGCATAGTA	ATT	Δ	GTCTTT	TAATT	GAGGTC	ΤΔGΔΔΤGΔΔΤ	GGTTT		$C\Lambda$
Ela5	AGC	CGCAGT	ATATTG	ACTIGIC	CGA	AGG	TAGCATAATA	ATT	Λ	GTCTTT	TAATT	GAGGTC	TTGAATGAAT	GGTTA		CA CG
Mee?	GGC	CCCCCT		ACTICITC	CAA	ACC	TACCATAATA		Δ	GTCTTT	TAATT	GACCTC	TTGAATGAAT	CCCTT	ΔΔ I	CA
Mee3	CCC	CCCCCT	ATTTA	ACTOTO	CAA	AUU	TACCATAATA		A	CTCTTT	TAATT	GACCTC	TTCAATCAAT	CCCTT	η <u>η</u> Ι	CA CA
Meco Maco		CCCCCT	ATTTA	ACTOTO	CAA	AUU ACC	TACCATAATA		A	GTCTT	TAATT	GACCTC	TTCAATOAAT	CCCTT	η <u>η</u> Ι	CA CA
MCCU Caro	CCC	CCCACT	ATTTC	ACTOTO	CAA	ACC	TAUCATAATA	ATT	A	GTCTT	TAATT	AAACTC	TTCTATCAAT	GATTC	AA GA	CA TC
Cia	CCC	CCCCCT	AATTO	ACTOR	CAA	AUU	TACCATAATA	ATT	A	CTCTTT	TAATT	CAACCC	TTCAATCAAT	CATTC	UA CA '	TC TC
Cica		CCCACT	AAACIU	ACTOTO	CLA	AUU	TACCATAATA	ATT	A	CTTTOT	TAATT	JAAUUU		CCATA	UA TA '	TC TC
Cicl	CCC	TOCACT	ATACIA	ACTOTO	CAA	AUU	TAUCAAAATA	ATT	A	CTTTTCT	TAATT	AUAAUU	TAUAATUAAT	CLATT	1A 4 4 1	TC DI
CICZ	CCC	TOCAUL	ATTIC	ACIUIU	CAA	AUU	TAUCATAUTA	ATT	A	CTTTOT	TAATT	CCAACC	TOULATUAAT	CONTO	/1.Λ 'Γ∧'	TC DI
Cico	JUU	TOCAUL	ATALIU	ACIUIU	CAA	AUU	TAUCATAUTA	AII	A	CTTTTTT	TAATI	CLACCO	TOTATOAAL	CCAAA	1A TT '	TC TC
C1C4	GOU	TUCAUL	AUCTIG	ACIGIG	CAA	AUU	TAGCATAATA	ALL	А	01111	TAATT	UAAGGC	TGUTATGAAT	UUAAA	11	10
	>	<09a->	<>	<-090>	<->	./Ua>	×>		-	1a-	<>	<-/10>	<>	<0/0>	\sim	<-

										242
Ful2	AAAATTAT AC	TTTATTTTTTAATTTAA	TTTGAATTTTATTT	TTAAG	TTAAAAAG	CTTAA	ATTTA	GGAGAGGGACGA	TAAGA	CC
Eu13	AAAATTAT AC	AATTTAATTTTTTTTTTTAATTTTAA	TTTGAATTTTATTT	TTAAG	TTAAAAAG	CTTAA	ΑΤΤΤΑ	GGAGAGGGACGA	TAAGA	CC
Fu14	ΑGAAGTAA ΑC	· TTTATTATCTTAATTTA	TTTCAATTTTATTT	TTTAG	TAAAAAAG	СТААА	TTOTT	GAAGAGGGACGA	TAAGA	CC
E.15	ALANTTAT AC	V TTELETERICIERA ATTELA		TTAL	TTAAAAAO	CTTCA	ATTIT	CAACACCCACCA		CC
rul)	AAAATTAT AC		THUAATTIATTI	TIAAU	TTAAAAAG	CITUA	AIIII	GAAGAGGGAGGA	TAAGA	
DICI	AGAAATAT AQ	TTTATTTAATIGATTTT-	TTTGAATTTTATTT	TTTAG	TTAAAAAG	CIAAA	ATTTT	GAAGAGGGACGA	TAAGA	ac
Dic2	AAAAATTT AC	TTTATTTTTTTTTATTGT-	TTTGAATTTTATTT	TTTAG	TCAAAAAG	CTTAA	ATATT	AAAGAGGGACGA	TAAGA	CC
Dic3	AGAAATTT AC	TTTATTTCATTTATTTT-	TTTGAATTTTATAT	TTTGG	TTAAAAAG	CTTAA	ATGTT	GAAGAGGGACGA	AAAGA	CC
Dic4	AGAAATAT AC	TTTATTTAATTGATTTT-	ATTGAATTTTATTT	TTTAG	TTAAAAAG	CTAAA	ATTTT	GAAGAGGGACGA	TAAGA	CC
Fla1	AGGAAATT AC	TTTTTATTTTTTTTTTTAATTTTTT	GTTGAATTTTAGAT	TTTGG	ΤΤΔΔΔΔΤΤ	CCAAA	ATTTT	TAAAAGGGACGA	TAAGA	CC
	ACCANTTA AC		TTTTA ATTTTTCTT	TTTCC	TTAAATA	CCAAA	ATTTT	TATAAGGGACGA	TAAGA	cc
	AUGAATTA AC	TITATITAAATIATIT		TTTCC	TTAAAATA	CCAAA		TATAAOOOACOA	TAAUA	cc
FIAS	AGGGAATT IC		ATTIAATTIAIGIT	THUU	TTAAAATA	CLAGG	AIIII	TAAAAGGGACGA	TAAGA	
FIa4	AGGAATTA AC	C TTTATTTAAATTATTTT-	TITTAATTTTIGIT	TTIGG	TTAAAATA	CCAAA	ATTTT	TATAAGGGACGA	TAAGA	œ
Del8	AGAAAATA AC	С ТПТАТТААТТААТСТТТ-	TTTCAATTTTATTT	TTTAG	TTAAAAAG	CTAAA	ATTTT	TAAATGGGACGA	TAAGA	CC
Nog1	AGAAATTT TC	C TITTATTITITITATTITA	TTTGAATTTTTATT	TTTGG	TTAAAATT	CCAAA	ATTTT	TAAGAGGGACGA	TAAGA	CC
Nog2	AAAAATTT AC	TTTATTTATTTTATTTT-	TTITAACITTTATT	TTTGG	ΤΤΑΑΑΑΤΑ	CCAAA	GTTTA	TAAGAGGGACGA	TAAGA	CC
Ach1	AGGAAATA AG	TTTATTTATTAA??????	222222222222222222222222222222222222222	22222	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	22222	22222	222222222222222222222222222222222222222	22222	22
Ach2	ΔGΔΔΔΔΤΔ ΔC	ΥΤΤΑΤΤΑΔΤΤΑΔΔΤΤΤΑ	ΤΤΤΓΓΑ ΔΤΤΤΤΑ ΔΤΤΤΤ	TTAAG	ΤΔΔΔΔΔΔΩ	CTTAA	GTATT	GAAGAGGGACGA	ΤΔΔGΔ	CC
De n1		· 11171177711177777111-		TTTAC	TTAAAAAO	CTAAA	ATTTT			CC
DCII	AUUAUACA AC			TOLLO	TTAAAAAO	OTTOL	ATTICA	TRADAUUUACUA	TAAUA	a da
Derz	AGAAAAIA GC	IIIAIIIIIGIAAIII-	IIIUAAIIIAAIIA	ICAAG	TTAAAAAG	CTIGA	ATTIA	TTAAAGGGACGA	TAAGA	ũ
Der3	AAAAATAA TU	C TATITITAATITITATITIT	TTIGAATTIAAATT	TITIG	TTAAAATG	CTAAA	ATTTA	ATAGAGGGACGA	TAAGA	CC
Der4	AAAAATAA TO	TTTATTTTTTTTTTTT	TTTTTAATTTTTAATT	TTGTG	TTAAAATG	CATAA	ATTTT	TAAGAGGGACGA	TAAGA	CC
Der9	AAAAATAA TO	C TATTITTAATTITTATTITT	TTTGAATITTAAATT	TTTTG	TTAAAATG	CTAAA	ATTTA	ATAGAGGGACGA	TAAGA	CC
Tro1	AGAAAAAT AC	TTTATTTTTAAAATTT-	ATTTAATTTAATTT	TATTG	TTAAAACG	CAATA	ATTAT	TTGAAGTGACGA	TAAGA	CC
Tro2	AAAAAAAT GO	TTTATTTGATTTATTT	ATTTAATTTAACTT	CATTG	TTAAAATG	CAATG	ATTTT	TTAAAGTGACGA	TAAGA	CC.
Tro3				TTTTC	TTAAAAAG	CTTAA	ATTTA	TTGAAGTGACGA	TAAGA	CC
T105	AUAATAA AC		ATTAATTAATT	OATTO	TTAAAAAU	CLIAN	ATTTT	TTAAAOTOACOA	TAAUA	cc
1r04	AAAAAAAI GC	/ IIIAIIIGAIIIAIII	ATTIAATTIAACTI	CATIG	TIAAAAIG	CAAIG	AIIII	TTAAAGTGACGA	TAAGA	UL CC
RICI	AGAAACAA AC	TTTATIGAAATAAATTT-	TITTAATTTIGATT	TTGAG	TTAGAATA	CITAA	ATTTT	AAAGGGGGGGGGG	TAAGA	ά¢.
Ric3	AAAAACAT AC	C TITTATTAATTITITAAT	TTITTAATTITTTACT	TTAAG	TTAAAATA	CTTAA	ATATT	AAAGTGGGACGA	TAAGA	CC
Ric4	AGAAATAA CC	TTTATTTATTTATTAA-	ATTTAATTTTTTT	TTAAG	TTAAAATA	CTTAA	ATTTT	TAAGAGGGACGA	TAAGA	CC
Ric5	AGAAATAT AC	TTTATTTGAAAAATTTT-	TTTGAATTTTAAAT	TTAAG	TTAAAATT	CTTAA	ATTTT	TAAGAGGGACGA	TAAGA	CC
Eur1	AAGAATAA AC	TTTATTAATTGATTAA -	TTTGAATTTTAATT	TCAAG	TAAAAAT-	CTT?A	ATTTT	AATAAGGGACGA	TAAGA	CC
Lonl	AGAAACTT GI	ημηγρατικά απα α απητηγ	TTTGAATTTAAGTT	TCTAG	ΤΤΑΔΔΔΤΤΓ	CTAGA	ΔΤΔΔΤ	TAAGAGGGACGA	TAAGA	CC
Tot)		111A11AAAAAAAA11111- * TTTTATTTTTTAAATTTTT		TATAC		CTATA	ATTTC	TANCHCCCACCA	TAAUA	CC CC
Tetz	AGAAATAA AC	- TITATITITAAATIAI -		ATTCO	TAAAAAA	CIAIA	ATTO	TAAGTOODACOA	TAAGA	CC
1881	AGAAATTT AC	THAIGHTHAIT	TTIGAATTTTATTT	ATTGG	TTAAAAAG	CCATT	AIGII	TAAGAGGGACGA	TAAGA	œ
1 s s 5	AGAAATTT TC	TITATTAATITAATICA-	ATTGAATTTTATTT	TITIG	TTAAAAAG	СТТАА	ATTTA	AAAGAGGGACGA	TAAGA	CC
Iss9	AGAAATTT AC	C TITTATTGTTTTTTATTTTT	TTTGAATTTTATTT	ATTGG	TTAAAAAG	CCATT	ATGTT	TAAGAGGGACGA	TAAGA	CC
Iss10	AGAAAATT AC	TTTATTTTATTTATTTTT	TTTGAACTITACTT	TTTGG	TTAAAAGG	CCAAT	ATTTT	AAAGAGGGACGA	TAAGA	CC
Lss2	AGGAATAT AC	TTTATTAATTTAATTTT	TTTGAATTTTATAT	TTTTG	TTAAAAAG	CTTAA	GTTAA	AAAGAGTGACGA	TAAGA	CC
Lec11	ΔGGΔΔΤΔΤ ΔC	ΥΤΤΤΑΤΤΑΑΤΤΤΑΑΤΤΤΤΤ	ΤΤΤΓΓΑΛΑΤΤΤΤΤΑΤΑΤ	TTTTG	ΤΤΔΔΔΔΔG	CTTAA	GTTAT	AAAGAGTGACGA	TAAGA	CC
Lec12	ACCANTAT AC	·	TTTCAATTTTATAT	TTTTC	TTAAAAAG	CTTAA	GTTAT	AAAGAGTGACGA	TAAGA	CC
18812	AUGAATAT AC	V TITATIAATITAATITI	TITUAATTITATAT	TTTAC	TTAAAAAU	CTAAA	ATOTT	TTACACCCACCA	CAACA	CC CC
1885	AGAAATAA AC		THUAATHUTH	TITAG	TTAAAATT	CIAAA	AIGIT	TIAGAGGGACGA	CAAGA	U.
18814	AGATATGA AC	TTTATTTATTTATTTT-	TTTGAATTIGTTTT	TTTAG	TTAAAATT	CTAAA	ATGLT	TAAGTGGGACGA	CAAGA	CC
Iss4	AAAAAAA AC	2 TITTATTAATITITITITIGT	ATTGAATTTTATTT	TTAAT	TTAAAAAG	ATTAA	ATTTT	TGAAGGGGACGA	TAAGA	CC
I s s 6	AAAAATCT AC	TTTATTAATATTTTTTT-	ATTGAATTTTATTT	TTAAT	TTAAAAAG	ATTAA	ATTTA	TTTAGGGGACGA	TAAGA	CC
Iss7	AAAAAACT AC	TTTATTAATATTTTTTT-	ATTGAATTTTATTT	TTGAT	TTAAAAAG	ATTAA	ATTTA	TTTAGGGGACGA	TAAGA	CC
Iss8	ΑΑΑΑΑΑΤΤ ΤΟ	TTTATTAGTTTTATTAAT	TGAAATTTATTTT	AATTT	AAAAAGAT	TAATT	GTTTA	AAAGGGGCACGA	TAAGA	CC
Civ2	GGAGGTAA AC	TTTATTATTTTTTTTT	TTTGAATTTAATTT	TTTAG	ΤΤΔΔΔΔΔG	CTTAA	ATTTT	TAATTGTGACGA	ΤΔΔGΔ	CC
Civa	AGAAAATA AG	` ŢŦŢŢĂŢŢĨĂĂĂĂĂŢĂĂĂĂŢŢŢŢŢ	ΤΥΥΤΤΑ ΑΤΤΤΑ ΑΤΑΤ	TTTTT	TTAAAAAC	CTAAA	AT(1AT	TAAGTGGGACCA	TAACA	cc
CIX5	AUAAAATA AC		TUTIAATTAATAT	TITIC	TTAAAAAO	OTTAA	ATUAL	TAAOTOOOACOA	TAAOA	CC CC
CIX4	AGAAAATA AC		TITTAATTTAATAT	TITIG	TTAAAAAG	CITAA	ATAAT	TAAGTGGGACGA	TAAGA	u.
Cix6	AGAAAACA AC	ΤΠΑΓΙΑΑΙΑΑΑΙΤΓΓΓ	TITTAATTTAATTT	TTTAG	TTAAAAAG	CTTAA	ATAAT	TAAGTGGGACGA	TAAGA	æ
Del2	AGAAGTAA GO	C TITTATTAATTCAATTA	AGTGAAATTTATTT	TTTAG	TTAAAAAG	CTAAA	ATTTA	AAAATGGGACGA	TAAGA	CC
Del3	AGGTGAAA AC	TTTCTTATTTAAATTAC-	TTTGAATTTAATTT	TTTAG	TTAAAAAG	CTAAA	ATTTT	TAAATGGGACGA	TAAGA	CC
De14	AGAAGATT TO	TTTATTTAATTTATTT	TTITAATITAATIT	TGTAG	TTAAAAAG	CTTCA	ATTTT	TAATTGGGACGA	TAAGA	CC
De16	AGAAGATT TO	ΤΤΤΑΤΤΤΑΑΤΤΤΑΤΤΤΑ	TTTTAATTTAATTT	TTTAG	TTAAAAAG	CTTTA	ATTAT	TAATTGGGACGA	TAAGA	CC
Del7	AGAAGTAA GO	ΥΤΥΓΑΤΤΑ ΑΤΤΟΑ ΑΤΤΑ	AGTGAAATTTATT	TTTAG	TTAAAAAG	СТААА	ΔΤΤΓΤΔ		TAAGA	CC
Ela5	AACAATAA AC	› ፲፲፲፲፲፲፲፲፲፲፲፲፲፲፲ › ጥሞዮልጥምዮል ለጥዮል ለጥምጥ	TATTI A A TATTIATTI A TATTI	TTTTCC	TTAAAATA	CCACA	ATATT	TAAACCCACCA	TAACA	cc
Marc	AAUAATAA AC	2 IIIAIIIAAIIAAIIAAIII Varite a martina a ma	TITIAATITIUTI	TAAC	TTAAAAIA	CUAUA	ATAT	TAAAAOOOACOA	TAACA	CC CC
Mee2	AAAAAAIA IQ	, IIIAIIAAAIIAAAIIT-		TAAAG	TTAAAATT	CITIA	ATAAT	TAAUUUUUUUAUUA	TAAGA	
Mee3	AAATAATA G	IIIAIIAAATTAAATTA	TTIGAAATTAATT	TAAAG	TTAAAATT	CITTA	ATTAT	TAAGGGGGGGGGGACGA	TAAGA	œ
Mee6	AAAAAATA TO	TTTATTAAATTAAATTT-	TITTAAGTTAATTT	TAAAG	TTAAAATT	CTTTA	ATAAT	TAAGGGGGGACGA	TAAGA	CC
Cerc	AGAAATTA TO	TTTCTTTATTATTTTA	ACTGAATTTGATAT	TTAGG	TGAAAAAG	CTTAA	ATTTT	TCTGTGGGACGA	TAAGA	CC
Cica	AAAAGCTA TO	TTTATTAATATAAAAAA	TITTAATTTAACAT	TTAAG	TAAAAAGG	CTTAA	ATATT	TTAGTGGGACGA	GAAGA	CC
Cicl	TGATATAT AT	TTTATTAGGTTTAAAA	TTAAAATTTTAATT	TTGGG	TTAAAATG	CTCAA	TTTCT	TTTTAGGGACGA	TAAGA	CC
Cic2	ΑGAAATAT ΛΊ	ΤΤΤΤΑΤΤΑΔΤΤΤΤΔΔΤΑ	ΤΤΓΓΑΔΑΤΤΤΔΔΑΤΤ	TTAAG	TGAAAATG	CTTAA	AGGTT	TTCTTGGGACGA	TAAGA	čč
Cia2		· TTTATTA ATTTACTA	ΤΤΛΛΛΛΛΤΤΛΛΛΤΙ ΤΤΛΛΛΛΛΤΤΛΛΛΤΤ	TTAAC	TCAAATC	CTTAA	TTATT	TTTCTCCCACCA	TCACA	CC
CI 05	ACATACAT CI	TITATIAATITACIA		TTAAU	TTAAATO	CTTAA	CTCAA	TICIOUACUA	TANCA	CC
C1C4	AUATACAT GI	TITATI GATTIAAAII-	TATAAATTTAAACT	TTAAG	TTAAAATG	CITAA	UTUAA	TICITUUUACUA	TAAGA	u
	b4b> <>	• <blb></blb>	<>	2a	<>	2b	<>	<>	<>	<-

APPENDIX I : (Cont.)

					328
Fu12	CTATAGATCTT T	ATTITATITITGATITITITITI	TAGTTAATT	TTAAAAATTTTAATTAATAAAA	TT TGTTG GGG TGAC
Ful3	CTATAGATCTT T	ATTITATITITGATITITITITI	TAGTITATT	ΤΤΤΑΑΑΑΤΤΤΥΤΤΑΤΤΑΑΤΤΑΑΑΤ	TT TGTTG GGG TGAC
Ful4	CTATAGATCTT T	ATTITUTCCATITUTTATTT	TAGTITATT	TTAGATTTTTTTTGGTTATAAAT	TT TGCTG GGG TGGT
Ful5	CTATAGATCTT T	ATTITATITIGATITITITI	TAGTTTATT	TTTAAAATTTTTATGAATTAAAT	TT TGTTG GGG TGAC
Dicl	CTATAGATCTT A	ΑΤΤΤΑΑΤΤΤΑΤΤΤΑΑGΤΤΤΤΤΤΤ	TIGTIGICT	ΤΤΤΤΤΑΑΤΤΤΑΑΤΤΤΑΑΑΤ	TT GGTTG GGG CGAC
Dic2	CTATAGATCTT G	ΑΑΤΤΤΑΤΤΑΑΑΤΤΑΑΤΤΤΑΤΤΤΤΤ	TIGTIGTIT	TTATTAATTTATTTTAATTAATT	TT AGTTG GGG CGAT
Dic3	CTATAGATCTT A	ΑΑΤΤΤΤΤΤΤΑΤΤΑΤΑΑΤΤΤΤΑΤΤΤΤΤΤ	TTGTGGTTT	TTTTTAATTTGAAGTAATCAATT	TT GGTTG GGG CGAT
Dic4	CTATAGATCTT A	ΑΤΤΤΑΑΤΤΤΑΤΤΤΑΑGΑΤΑΑΑΑΤ	TTGTTGTAT	TTTTTAATTTATTTATTTTAAAT	TT GGTTG GGG CGAC
Flal	CTATAGATCTT T	ATAATTCTTATTTTTTTGTTTTTT	TIGTIGTIT	- TAAGATTATTTATTTATGATTTAT	TT AGTTG GGG TGAT
F1a2	CTATAGATCTT T	ΑΑΑΑΑΑΑΑΤΑΤΤΤΑΤΤΤΤΤΤΤΤΤΤΤ	TTGTTGTAT	TTTAAAATTAAGATATTTTTTTT	TT TGTTG GGG TGAC
F1a3	CTATAGATCTT T	ATAATATTTTATTATTTAGGTTTT	TTGTTGTAT	TITTTTATTTAGTATTTTTTAT	TT AGTTG GGG TGAT
F1a4	CTATAGATCTT T	ΑΑΑΑΑΑΑΑΤΑΤΤΤΑΤΤΤΤΓΤΤΤΤΤ	TTGTTGTAT	TITAAAATTAAGATATTTTTTTT	TT TGTTG GGG TGAC
De18	CTATAGATCTT A	AAATTTTTTATATTTGAAATAATTT-	TATGGGTTA	ATTTAAATTTTGTTTGGGAAAATTT	TT TGTTG GGG TGAC
Nog1	CTATAGATCTT T	AAAATAATTTATTTATTATTATTTTTT-	TTGTTGTAT	TTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TT TGTTG GGG TGAT
Nog2	CTATAGATCTT T	AAAATIGTITTTTTTTTTTTTTT	TTGATGTGT	- TTTTAGGAGAATTATTTCATTTTT	TT TGTTG GGG TGAT
Ach1	???????????????????????????????????????		??????????	?????TTTTTTAGGAAGTAAAAAT	TT TGTTG GGG TGAC
Ach2	CTATAGATCTT T	ATTATTAATTTTTATAAGATGTTTAG	TAGATTTTT	TTTTTTGTGAAAATTATTAA	TT TGCTG GGG TGGC
Dcr1	CTATAGATCTT T	ATTATTGATTTTTTTATTTTTG	TTAATITIT	TATITAATITAATTAATAAT	TT TATTG GGG TGAT
Der2	CTATAGATCTT T	ATTATTTAGGTTTTATATTATTA	TTATTGTTT	TTGATTTTTATAATTTAAATAAT	TT TATTG GGG TGAT
Der3	CTATAGATCTT T	ATTATATTTATATATATTTATTTTT-	TTATIGTIT	TTTATTATATATATAAATTTAAT	TT TATTG GGG TGAT
Dcr4	CTAAAGATCTT T	ΑΤΤΤΑΑΤΑΑΤΤΑΤΤΤΤΤΑΑΤΤΤΤΤ	TTTAA	TTTTTTTATTTTAATTTTTAAAT	TT GGTTG GGG TGAT
Der9	CTATAGATCTT T	ΑΤΤΑΤΑΤΤΤΑΤΑΑΤΑΤΤΤΑΤΤΤΤΤΤΤΤ-	TTATTGTTT	TTTATTATATATAAATTTAAA	TT TATTG GGG TGAT
Trol	CTATAGATCTT T	ATTITATTITTTTTTTTTTTTTTTTTT	TTGATGGTT	- TTTATTTAAATTTAAATTAAAAAT	TT TGTTG GGG TGAC
Tro2	CTATAGATCTT T	ATTTTTTTTATATTTTTTTTTTT	TTGTTGATT	- TTATATAATTTTAGTTTAAAAAAT	TT TGTTG GGG TGAT
Tro3	CTATAGATCTT A	ATTAATTTTTTAATATTTTTTTTT	TTGTTGTAT	TTTATTGTTATTAAATTTAAT	TT TGTTG GGG TGAT
Tro4	CTATAGATCTT T	ATTTTTTT - CTATTTTTTTTTTTTT	TTGTTGATT	- TTATGTATTTTTAGTTTAAAAAAT	TT TGTTG GGG TGAT
Ricl	CTATAGATCTT A	ΑΑΑΑΤΑΤΤΤΑCΤΤΤΤΤΑΤΤΤΤΤΤΤΤΤΤ-	TTGTTGTTT	TITATTTAAATATTATTTATTTT	TT AGTTG GGG TGAT
Ric3	CTATAGATCTT A	ATAATTTTATTATTTATTTTTTTT	TTGTTGTTT	- TATTAATTTATTTATTTAATTTTTT	TT AGTTG GGG TGAT
Ric4	CTATAGATCTT G	AGAATTTTTTTTTTTTTTTTTTTTTTTTT	TIGTIGTIT	TITATTTGGAATTTTAATTTTCT	TT AGTTG GGG TGAT
Ric5	CTATAGATCTT A	ATAATTATITTTTTTTTTTTTTTTTTT	TTGTTGTGA	TITAATATATITTAAAATTTITTT	TT TGTTG GGG TGAT
Eurl	CTATAGATCTT -	ATAATAATITTTTTTTTAAAATTT	TAGITGITT	-ATAAATTTAAAATAAAAATTTTAA	TT TGTTG GGG TGAT
Lopl	CTATAGATCTT A	ΑΤΑΑΤΑΤΑΑΑΤΑΑΤΤΑΑΤΑΑΑΤΤ-	TAGATTATA	TATIGGIAATITTTTTTTTTTTTT	TT TGTTG GGG TGAT
Tet2	CTATAGATCIT T	ATAAATTAAAAGTTTATTTTTTT	TIGAATTAT	- TITTATATTAAATTTTTAATTTAT	TT TGTTG GGG TGAT
ISSI	CIGIAGAICIT T		GIGITIGIT	ITITIGITATIATIGATITAT	TT IGTIG GGG IGAC
1885	CTATAGATCTT T		TIGIAGITI		TI IUIIU UUU IUAI
1559	CIGIAGAICII I		TIGITIGIT		TT TOTTC CCC TCAT
15510	CTATACATCTT T		TIGITIGIC		TT TOTTC CCC ACAT
1882	CTATACATCTT T		TIGHUIT		TT TOTTO COO AGAT
18811 Lee12	CTATAGATCTT T		TTGTTGTTT		TT TOTTO COO AGAT
18812		AAAAIIIIIIIIIIIIAAIIIIII AGAAGATTTTATTTATTTTTTT	TIGHTGTTT		TT TOTTO COO AGAI
1885 Tee14	CTATAGATCIA A		TTGTTGTTT		TT TOTIC COC TOAC
15514 Ice/	CTATAGATCTT A		TIGTIGITI	ΔΤΔΤΤΤΔΤΔΔΔΔΔΔΤΤΔΤΔΤΤΔΤΤΤΤ	TT TGTTG GGG TGAC
1334 Iss6	CTATAGATCTT A		TIGTIGTTA	ΔΔΥΓΓΓΓΓΟΥΔΑΔΔΔΑΓΑΤΑΤΓΑΤΓΓΓ	TT TGTTG GGG TGAC
1330	CTATAGATCTT A	ΔΑΔΑΤΑΤΤΙΤΙΤΙΤΙΤΙΤΙΤΙΤΑΤΤΑΑΤΤΓ	TTGTTGTTA	ΔΑΤΤΤΤΤΤΓΓΑΔΑΤΤΑΔΤΑΤΤΑΤΤΤΤ	TT TGTTG GGG TGAC
1557	CTATAGATCTT T	ΑΑΑΑΤΤΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ	TIGTIGTIT	-TTAATAAATTTTTAAATAGATTTT	TT TATTG GGG TGAT
Cix2	CTATAGATCTT A	ΑΑΑΑΤΑΤΙΤΤΤΑΤΑΤΑΑΑΤΙΤΤΤΤ	TTGTGGTAT	-TCTTTTTTTGTAGGAATTATTTT	TT AGTTG GGG TGAT
Cix3	CTGTAGATCTT T	ΑΤΑΑΤΤΑΑΤΤΑΑΤΑΤΑΑΑΑΤΤΤΤ	TGGTTGTAT	TATTTTTTTTTTTTAGTTAATTAT	TT TGTTG GGG TGAC
Cix4	CTGTAGATCTT T	ΑΤΑΑΤΤΑΑΤΤΑΑΑΑΤΑΑΤΤΤΤΤΤΤ	TGGTTGATA	TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TT TGTTG GGG TGCC
Cix6	CTGTAGATCTT A	AAATATTTAATAAGTTCATTTTT	TTGTTGTTA	TTATGTGTTTCTTATTTAAACTTTT	TT TATTG GGG TGAT
Del2	CTTTAGATCTG T	AAATTTTAATTGAATAATAATATA-	ATGTGGATT	TAATTTTTATTAAATAAAATTT	TT TGTTG GGG TGAC
Del3	CTATAGATCTT A	AATTTTTTTTTTTATCTTAATTTCT	TGGTTAATA	AAATGTTAAAATTTTAAAAAAATT	TT TGTTG GGG TGAC
De14	CTGTAGATCTT T	AAAATTGGTTTTTTTTTTTTTTTTTTT	TIGTITATT	TAATTTTTTATTTTTTTTTTTTTTTTTTTTTTTTT	TT GGTTG GGG TGAT
De16	CTGTAGATCTT T	ΑΑΑΑΤΤΓGΑΤΤΤΤΤΑΑΤΑΑΤΤΤΤΤΤΤ	TTGTTTATT	TAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TT GGTTG GGG TGAT
Del7	CTTTAGATCTT T	AAATTTTAATTGAATAATAATATTA-	ATGTGGATT	TAATTITTATTAAATAAAATIT	TT TGTTG GGG TGAC
Fla5	CTATAGATCTT A	AAAATATTTTTTTTTTTTTTTTTTTTTTT	TIGTIGTIT	-TTTAAAAAATTTATCTTTTATTTT	TT TGTTG GGG TGAT
Mee2	CTATAGATCTT A	ΑΑΑΑΑΑΤΑΑΑΤΤΤΟΤΤΑΤΤ	TGGTTTTTTT	TATTTATAAATTAATTTATTTAT	TT AGTTG GGG AGAT
Mee3	CTATAGATCTT A	AAAAATAAATTTTTATATT	TAGTTTTTT	TTATTTTTTAAAATTTATTTTT	TT AATTG GGG AGAT
Mee6	CTATAGATCTT A	AAAAAATAAATTTCTTATT	TGGTTTTTT	TATTTATAAATTAATTTATTTAT	TT AGTTG GGG AGAT
Cerc	CTATAGATCIT T	AAAATTATTTTTTTTTTTTTTTTTTTTTTT	AGAATTTAT	-ATTTCTTATTAAATTATTAATTTT	TT TGTTG GGG TGAT
Cica	CTATAGAATIT G	ΑΑΑΤCTΑΤΑΑΤΤΑΤΤΑΑΑΤΤΤΑΤΤ	TAGATAAAT	-ATTAAATTTAATAATTATGAATTT	TT TGTTG GGG TGAC
Cicl	CTATAGAACTT T	ACTAAATATAATTTAGTTGGTTTT	TTTTTTATA	TAAATTTATTAAATTTTATTT	TT AGTTG GGG TGAC
Cic2	CTATAGAACTT T	ACATC-TAATTTCTAGTTGATTTT	AACTTTTAT	ACTCTTCTAGGGTTTTTTAGATGA	TT CGCTG GGG TGGT
Cic3	CTATAGAACIT T	ATATTACCTAGTTATAGTTTATTT	TIGATIATA	-ATACTATCTTAATATTACAGTACT	TT TOCIG GGG TGGT
C1c4	CTATAGAACIT T	ACATIGITIGITITTAATGAATITT-	TACATTAAA	TATTATATTAATTTAAGACTTGT	TT TOCIG GGG TGGT
	/4a> -	<>/5a>	<>	<>/5b>	<> <8∪a> <-> <80b

APPENDIX I : (Cont.)

									408
Ful2	A AAAAA	A -AATTTAATC	TITITIT	TT TT	TTTTACATTTTTTT	AT- GA	ATATTTGATC	CTTA -T-	TTTG ATTAAAAGATT
Ful3	A AATAA	A -ATTITAATC	TITATT	TT TT	TITTACATITITIT	AT- GA	ATATTTGATC	CTTA TT-	TTTG ATTAAAAGATT
Ful4	A GATAA	A -ATTITAATC	TTTATT	TT TT	TITTACATTICTIT	AT- GT	GATTTTGATC	CTTT TT-	TTTG ATTATAAGATT
Ful5	A AATAA	A -ATTITAATC	TTTATT	TT TT	TTTTACATTTTTT	AT- GT	CIGITIGATC	CITT AT-	TTTG ATTAAAAGATT
Dicl	A AATAA	A -TITITAATC	TTT-TT	TT TT	TITTACAATTATIT	TIG GT	TTTTGATC	TITT TT-	ATTG ATTATAAGATG
Dic2	G AATAA	A -ATTITAATC	TITIT	TT TT	TTTTACA-TTATAT	ITG GA	TATTIGATC	CITT TH	TTTG ATTAAAAGATA
Dic3	A ATTAA	A -CATTTAAAC	CTITIT	TT TT	TITTACATTIATIT	TT- GA	TITATIGATC	TTTA TT-	TTTG ATTAAAAGATT
D1c4	A AATAA	A -TTTTTAAAC	CITIT	TT TT	TITTACAATTATT	TIG GT	TTTTGATC	TITI TI-	ATTG ATTATAAGATG
FIAL	C TTTTA	A -AATITIAIC	TITALI	IA II	TITIACATITITI		IATTIGATC	TIAA ALL	IIGU AIIAIAAUAAA
F1a2	U IIIAA	A -AIIIIIGAC			TITIACA-IIIIII	H-UI		CTETA ANT	TILU ALIAIAIUAII
FIAS	C TTTA	A -AIIIIAAAC	TTTTAAA	TT TT	TITIACAATIATIT TTTTACA TTTTTT	TIU UI	TTAATTTCATC	TTCA ATT	TIAU ATTATAAUATT
FIA4 Dol9	A TATAA	A -AIIIIUAC			TITIACA-IIIIII TTTTACATTTATAC	AT CT		CAAL CTT	TITU ATTATATUATT
Nogl	A TATAA	Α ΙΙΙΙΙΑΑΑΑΟ	TTTTAAA	TT AT		ATC CT	TTTTTGATC	CTTA ATT	TTTC ATTATIAAAAT
Nog1		A = ATTTTAAAC	ΤΤΤΛΤΛ	TT TT		TTG GT		CTTT TTT	TTTG ATTTTAAGATT
Achl	Α ΤΑΤΑΑ	A -ATTTTAAAC	TTTATT	TT TT	CTERGCEPTTATE	TTG GT	- TTATTTGATC	CTTA AT-	TTTG GATTTTAGATT
Ach2	A GGTAA	A -ATATTTATC	TTTTATT	TT TT	TTTTACATTTATTT	ATG TT	- TAGTITGATC	CAGA ATT	TTTG ATTGAAAGATT
Der1	A ATTAA	A -TITTITAC	TTTTTT	TT TT	TAGAACAATTTTTT	ATG GG	AATTTGATC	TTTT AT-	TTTG ATTTTAAGAAA
Der2	Α ΑΤΤΑΑ	A -AATTTAAAC	TTTTTT	TT TT	ATTAACATTTATTT	GT	GAATTAAGTA	TTTT TT	TAAG AGAATAAGATA
Der3	A ATTAA	A -ATTTTTATC	TTTTTT	AT TT	TATTACAATAGTTT	TTG GT	-TAAATGATCCT	AAAT AAT	TTAG ATTAATAGATA
Der4	A AATAA	A - TATTTAATC	TTTTTT	TT TT	TTITACATITITIT	ATG GT	TATTTGAGT	T TTT	A AATTAAAAGAA
Der9	A ATTAA	A -ATTTTTATC	TTTTTT	AT TT	TATTACAATAGTTT	TTG GT	-TAAATGATCCT	AAAT AAT	TTAG ATTAATAGATA
Trol	Α ΤΤΤΤΑΑ	A -ATTTTAATC	TTTATT	TA TT	TITTACATITITI	TT- GT	GTTTTTTGAAC	CATA ATI	TTTG TTTATTAGAAA
Tro2	A ATTAA	A - AATTTTATC	TTTAAT	TT TT	TTTTACATTTATTT	AT- GT	-TTAGTTTGAAC	CTTA ATI	TTTG TTTAAAAGAAT
Tro3	T GCTAA	A -ATTTTAATC	TTTAGT	TT TT	TATTACATTTATTT	TTG GT	TAGTTTGAAC	TTAT AT-	TTTG TTTGTAAGATA
Tro4	A ATTAA	A -AATTTTATC	TTTAAT	TT TT	TITTACATITATIT	AT- GT	-TTAGTITGAAC	CTTA ATI	TTTG TTTAAAAGAAC
Ric1	T ATTAA	A -ATTTTAAAC	TTTGAT	TT AT	TTTTACATTTAATT	TTG GC	TTATTTTTGATC	CTTC TTT	TTTG ATTATAAGATA
Ric3	T ACTAA	A -ATITTAAAC	TTTAGT	TT AT	TITTACATITIGTTA	TT- GT	-TITITIGATC	TTTT TT-	TTTG ATTATAAGATA
Ric4	T ACTAA	A -AATTTAAAC	TTTAGT	TT AT	TTTTACATTTATTA	TT- GT	-ATITATIGATC	CTIT TT-	TTTG ATTATAAGATA
Ric5	T ACCAA	A -AATTTAAAC	TTTGGT	TT AT	TTTTACATAAAATT	TAT GT	-ATTITITGATC	CTIT TT-	TTTG ATTATAAGAAA
Eurl	A ACTAA	A -ATTTTAAAC	TTTAGT	TT TT	TTTTACATAAATAA	AT- GT	-ATAAATTGATC	TTTA TT-	ATTG ATTATAAGATT
Lopl	A GCTAA	A -ATTITAAAC	TTTAGT	TT TT	TTTAACAATAATTT	IT- GI	-GTAATTIGATC	TTTT AT-	TTIG ATTATAAGATA
Tet2	A AATAA	A -ATTITAAAC	TITIT	TT TT		AT- GA	-TTAATTIGATC	CITT AAT	ATTG AAAATAAGATC
1881	A GITAA	A -ATTTTAAAC	TTTAGI	TT IT		AIG GI	ITGITAGAIC	TTTA ATT	TITG ATATCAAGATC
1885	A GUIAA	A -AIAIIAAAC	TTTTTAGT	II AI		IIU UI		CIII -II	ATTU ATATAAAGAAG
1889	A GITAA	A -AIIIIAAAC	TTTACT	11 11 TT TT		AIG GI	TIACIAGAIC	TTTA ATT	TITU ATATTAAUATT
	A GATAA		TTTAUT	11 11 TT TT		ATU UI	ATTEPTGATC	CTTA ATT	ΤΙΟΟ ΑΙΑΙΙΑΑΟΑΙΙ
1882	A GATAA	A = AATTTTAAC	TTTATT	11 11 ТТ ТТ		TG GT	TTTTTGATC	CTTA ATT	TTGG ATTATAAGAAT
18811 Lee12		$\Delta = \Delta \Delta TTTT \Delta \Delta C$	TTTATT	TT TT	TTTTACTTTTTTT	TG GT		CTTA ATT	TTGG ATTATAAGAAT
13312	A ATTAA	A -ATTTTAAAC	TTTTAAT	TT TT	THEACATETITE	AT- GT	- TTATTTGATC	CTIC TTI	GTTG ATTAAAAGATA
Iss14	A GTTAA	A -ATTTTTAAC	TTTTAAT	TT TT	TTTTTCATTTATT	AT- GA	ATTITIGATC	TTTT TTT	GATG ATTAAAAGATA
Iss4	A AATAA	A -AATTTAAAC	TTTATT	TT TT	TTITACATTIGTIT	AT- GA	-AATTITIGATC	CTTT -T-	TTGG ATAAAAAGAAA
Iss6	A AATAA	A -AATTTAAAC	TTTATT	TA TT	TTTTACATTTATAG	TT- GA	TTTTTTGATC	CTAA GTI	TTGG ATAGTAAGATA
Iss7	A AATAA	A - AATTTAAAC	TTTATT	τα ττ	TITTACATITATAG	AT- GA	TITITIGATC	CTAG -TI	TTGG ATAATAAGATA
Iss8	A ATCAA	A -AATTTTAAC	TTTAAT	TT AT	TTTAACATTAATTT	AT- GA	-TTTTTTTGATC	CTTA TTT	TTGG AGAAAAAGAAC
Cix2	T AAAGA	A -ATTTTAAAC	TTTTTT	TT TT	TTTTACATTGATAT	AT- GT	TTTTTTGATC	TTTA AT-	TTTG ATTAAAAGAGT
Cix3	A AATAA	A - TTTTTTAAC	TTTTTT	TA TT	ATATACATTATTTT	TTG GT	TTTTTGATC	CTTA AT-	TTTG ATTAAAAGAAA
Cix4	A GTAAA	A -TTTTTTAAC	CTTTTT	TT TT	TAGGACAATAATTT	TTT TT	GGGTTTTTTGATC	CTTT CAT	TTTG ATTAAAAGAAA
Cix6	A AATAA	A TTTTTTAAAC	TTTTTT	TT AT	ATTTACATTTATTT	ATG AA	AAATTTGATC	CTTT TAT	' TTTG ATTAAAAGAAA
De12	A GCTAA	A ATCITAAATC	TITAGT	AT TT	TACACCATTTATTT	AT- GT	ATATTTGAAC	CITA ATI	TAAG GTTATTAAAAT
Del3	A TTAAA	A TITITAAATC	TTTTAA	TC AT	TTTTACATAAATAA	AT- GT	ATATTIGATC	TTAA CAT	TTAG ATTAAAAAATT
Del4	T TTTAA	A TITITATIAC	TTTATT	TT TT	TITTACATTIATIT	AT- GT	TTAATIGATC	TTTA ATT	TTIG ATTITIAGAIT
De16		A IIIIIAIIAU	TTTTLATT			AI- UI	ITAATIGATC	CTEL ATT	THU ATTITAUATT
Del/ Elos	A UCIAA	A AICITAAAIC	111AU1 TTTATT	AL II TT TT	TACACCATTIATILA TTTTACATTTATT	AI-UI	AIAIIIUAAU	CTIA ALL	TAUU UTTATTAAAAA TTCC ATTATAACATA
riaj Maco	T TTTA	A ATTITUACC	TTTATT	11 11 TT TT	TTTACATTATI TTTTACATCAATT	AT CT	TTATIATIOAIC	CACT ATT	TTOU ATTATAAUATA
Mee3	т тіта <i>р</i> Т татаа	A -AATITAAAC	TTTATA	тт тт Тт тт	TTTTACATCAATTI TTTTACATTAATTI	TT. GT	TTTATATIOATC	CATT TTT	AGTG ATTTAAAGATA
Mee6	T TTTAA	A = AATTTAAAC	TTTATA	TT TT	TTTTACATCAATTT	AT- GT		CAGT ATT	ΤΟΤΟ ΑΤΤΙΛΛΛΟΛΙΑ
Cerc	A AATTA	Α -ΤΤΑΑΤΑΤΑΑ	CTITIT	TATG		TAT GT	- TTTTATGATC	TTTT ATT	AATG ATTAATAGATT
Cica	A TTAAA	Α ΤΑΤΤΑΑΤΑΑΟ	TTTTAA	TT AA	ATTTTCATAGATAA	AT- GA	TTATTAGATC	CAAT TTT	TTTG ATTTTAAGACT
Cicl	A GTTAA	A -TTTT-AA-C	TTTAAT	TT TG	ATAATCATTATTTT	AT- GT	-AGTITITIGATC	CATA TA-	TATG ATAATAAGATA
Cic2	G GATAA	A -TTT-AAA-C	TTTATT	AT TT	TATATCAATTATTT	TT- GT	- TTGTTTAGATC	CTTT TGC	AATCAAGAAT
Cic3	G GATAA	A -TTT-AAA-C	TTTTATA	TA AT	AATATCAATTATTA	AT- GA	-ATGTTAAGATC	TTAC AAC	TTAG ATTAAAAGATA
Cic4	G AATAA	A -TTT-AAA-C	TTTATT	AA TA	AAAATCA - TTATAA	AT- GT	- TTGTGTTGATC	TGTT ATT	AAGA ATTAAGAAT
	> <81a-	> <>	<-81b>	< ∞ 82a	×	><82b	×>	<88a≫->	• <88b><>

APPENDIX I : (Cont.)

								495
Ful2	AAGATACCTTAGGG	ATAACAG	CGTTATAAATCTGGAGA	GTTC-TTA	TTGAT - AGATTTGTTTGCG	ACCTCGATG	TTGGATTAAAA	GT
Fu13	AAGATACCTTAGGG	ATAACAG	CGTTATAAATCTGGAGA	GTTC-TTA	TTGAT - AGATTTGTTTGCG	ACCTCGATG	TTGGATTAAAA	GT
Ful4	AAGATACCTTAGGG	ATAACAG	CGTGATAATTCTGGAGA	GTTC-ATA	TTGAT - AGAGTTGTTTGCG	ACCTCGATG	TTGGATTAAAA	ĀŤ
Fu15	AAGATACCTTAGGG	ATAACAG	CGTTATAAATCTGGAGA	GTTC-TTA	TTGAT - AGATTTGTTTGCG	ACCTCGATG	TTGGATTAAAA	GT
Dic1	AAGATACCTTAGGG	ATAACAG	CGTTATTTAGTTGGATA	GTTC-ATA	TTGAT-AACTAAGATTGCG	ACCTCGATG	TTGGATTAAAA	TT
Dic2	AAGATACCTTAGGG	ATAACAG	CGTTATTTAGTTGGAGA	GTTC-TTA	TTGAT - AATTAAGTTTGCG	ACCTCGATG	TTGGATTAATA	AT
Dic3	TAGATACCTTAGGG	ATAACAG	CGTTATTTAATTGGAGA	GTTC-TAA	TCAAT-AATTAAGATTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Dic4	AAGATACCTTAGGG	ATAACAG	CGTTATTTAGTTGGATA	GTTC-ATA	TTGAT-AGCTAAGATTGCG	ACCTCGATG	TTGAATTAAAA	TT
Flal	AAGATACCTTAGGG	ATAACAG	CATAATAATTCTGGAGA	GTTC-TAA	TCGAT - AGACTTGTTTGTG	ACCTCGATG	TTGGATTAAAA	TT
F1a2	AAGATACCTTAGGG	ATAACAG	CATAATTTATTTGGAGA	GTTC-AAA	TCGAT-AATTAAGTTTGTG	ACCTCGATG	TTGGATTAAAA	TT
F1a3	AAGATACCTTAGGG	ATAACAG	CATAATTTACCTGGAGA	GTTC-TTA	TTGAT - AGGTTTGTTTGTG	ACCTCGATG	TTGGATTAAAA	ΤT
Fla4	AAGATACCTTAGGG	ATAACAG	CATAATTTATTTGGAGA	GTTC-AAA	TCGAT - AATTAAGTTTGTG	ACCTCGATG	TTGAATTAAAA	ΤT
Del8	AAGATACCTTAGGG	ATAACAG	CGTAATAAATTTGTATA	GTAC-ACA	TAAAT-AAGTTTGTTTACG	ACCTCGATG	TTGAATTAATA	TT
Nog1	AAGATACCTTAGGG	ATAACAG	CGTTATATATCTGGAGA	GTTC-TAA	TTGAT-AGATATGTTTGCG	ACCTCGATG	TTGGATTAATT	TA
Nog2	AAGATACCTTAGGG	ATAACAG	CGTTATATGTTTGGAGA	GTTC-TTA	TCGAT-AAATATGTTTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Achl	AAGATACCTTAGGG	ATAACAG	CGTTATATATTTGGAGA	GTTC-AAA	TTGAT - AAATATGTTTGCG	ACCTCGATG	TTGGATTAAAT	ΤT
Ach2	AAGATACCTTAGGG	ATAACAG	CGTAATATATTTGGAGA	GTTC-TTA	TTGAT-AAATATGTTTGCG	ACCTCGATG	TTGGATTAAAA	TT
Der1	AAGATACCTTAGGG	ATAACAG	CGTTATTTAATTGGAGA	GTTC-ATA	TTGAT-AATTAAGATTGCG	ACCTCGATG	TTGGATTAATA	AT
Der2	AAGATACCTTAGGG	ATAACAG	CGTTATATAACTGGAGA	GTTC-TTA	TTGAT-AGTTATGTTTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Der3	TAGATACCTTAGGG	ATAACAG	CGTTATATAATTGGAAA	GTTC-TTA	TTGAT-AATTATGATTGCG	ACCTCGATG	TTGGATTAAAG	ΤT
Der4	AAGATACCTTAGGG	ATAACAG	CGTTATAAAATTGGATA	GTTC-AAA	TTGAT-AATTTTGTTTGCG	ACCTCGATG	TTGGATTAATA	AA
Der9	TAGATACCTTAGGG	ATAACAG	CGTTATATAATTGGAAA	GTTC-TTA	TTGAT-AATTATGATTGCG	ACCTCGATG	TTGGATTAAAG	TT
Tro1	AAGATACCTTAGGG	ATAACAG	CGTAATATATTTGGATA	GTTC-TTA	TTGAT-AAATATTTTTTGCG	ACCTCGATG	TTGGATTAAAA	TT
Tro2	AAGATACCTTAGGG	ATAACAG	CGTAATTTATTTGGATA	GTTC-ATA	TTGAT-AAATATATTTGCG	ACCTCGATG	TTGGATTAATA	ΤT
Tro3	AAGATACCTTAGGG	ATAACAG	CGTAATTTGTTTGGATA	GTTC-AAA	TTGAT-AAATAAGTTTGCG	ACCTCGATG	TTGGATTAAAT	ΤT
Tro4	AAGATACCTTAGGG	ATAACAG	CGTAATTTATTTGGATA	GTTC-ATA	TTGAT - AAATATAATTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Ric1	AAGATACCTTAGGG	ATAACAG	CGTTATTCACTTGGAGA	GTTC-TAA	TCGAT-AAGTGAGTTTGCG	ACCTCGATG	TTGGATTAAAT	TT
Ric3	AAGATACCTTAGGG	ATAACAG	CGTTATTTGTTTGGAGA	GTTC-TTA	TTGAT-AAATGAGTTTGCG	ACCTCGATG	TTGGATTAAAT	ΤT
Ric4	AAGATACCTTAGGG	ATAACAG	CGTAATTTATTTGGAGA	GTTC-TTA	TTGAT-AAATAAGTTTGCG	ACCTCGATG	TTGGATTAAGT	ΤT
Ric5	TAGATACCTTAGGG	ATAACAG	CGTTATTTAATTGGAGA	GTTC-TTA	TCTAT - AATTAAGTTTGCG	ACCTCGATG	TTGGATTAAAT	ΤT
Eurl	AAGATACCTTAGGG	ATAACAG	CGTTATATATTTGGAGA	GTTC-TAA	TTGAT - AAATATGATTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Lopl	AAGATACCTTAGGG	ATAACAG	CGTTATTCATTTGAAGA	GTCC-ATA	TCTGT-AAATGAGTTTGCG	ACCTCGATG	TTGGATTAAAA	TA
Tet2	CAGATACCTTAGGG	ATAACAG	CGTTATATATTTGGAGA	GTTC-AAA	TTGAT - AAATATGTTTGCG	ACCTCGATG	TTGGATTAAAA	ΤT
Iss1	AAGATACCTCAGGG	ATAACAG	CGTTATAGATTTGGAGA	GTTC-TTA	TTGAT - AAATTTGTTTGCG	ACCTCGATG	TTGGATTAAAG	TT
Iss5	AAGATACCTTAGGG	ATAACAG	CGTTATATAGTTGGAGA	GTTC-AAA	TTGAT-AATTATGTTTGCG	ACCTCGATG	TTGGATTAAAG	TT
Iss9	AAGATACCTCAGGG	ATAACAG	CGTTATATATTTGGAGA	GTTC-TTA	TCGAT - AAATTTGTTTGCG	ACCTCGATG	TTGGATTAAAG	TT
Iss10	AAGATACCTCAGGG	ATAACAG	CGTTATAAATTTGGAGA	GTTC-TTA	TTGAT-AAATTTGTTTGCG	ACCTCGATG	TTGGATTAAAA	TT
Iss2	AAGATACCTTAGGG	ATAACAG	CGTTATAAATCTGGAAA	GTTC-TAA	TTGAT - AGATTTGTTTGCG	ACCTCGATG	TIGGATTAATT	TG
[\$\$1]	AAGATACCITAGGG	ATAACAG	CGITATAAGICIGGAAA	GITC-AAA	TTTAT-AGATTTGTTTGCG	ACCICGAIG	TIGGATTAACT	TA
Iss12	AAGATACCTTAGGG	ATAACAG	CGTTATAAGTCTGGAAA	GTTC-AAA	TTTAT-AGATTTGTTTGCG	ACCTCGATG	TTGAATTAATT	TG
Iss3	AAGATACCTTAGGG	ATAACAG	CGTAATATAATTGGATA	GTTC-AAA	TTGAT - AATTATGTTTGCG	ACCTCGATG	TTGGATTAAAC	TT
18814	AAGATACCTTAGGG	ATAACAG	CGTAATATAATIGGATA	GTTC-AAA	TIGAT-AATTATGTTIGCG	ACCICGATG	TIGGATTAAAT	TT
Iss4	AAGATACCTTAGGG	ATAACAG	CGTTATATTTCTGGAGA	GTTC-TAA	TCAAT-AGAATIGTTTCCG	ACCICGATG	TIGGATTAACT	TA
lss6	AAGATACCITAGGG	ATAACAG	CGITATAATICIGGAGA	GTTC-TAA	TCAAT-AGAATIGITIGCG	ACCICGAIG	TIGGATTAATT	TT
Iss7	AAGATACCTTAGGG	ATAACAG	CGTTATAATTCTGGAGA	GITC-TAA	TCAAT-AGAATIGTTIGCG	ACCICGATG	TIGGATTAATT	TA
1888	AAGATACCITAGGG	ATAACAG	CGTTATAAATTTGGAGA	GTIC-TAA	TCAAT-AAATTTGTTTGCG	ACCICGATG	TIGGATTAACI	TA
C1X2	AAGATACCITAGGG	ATAACAG	CGTAATATATTTGGAGA	GTTC-TTA	TIGAT-AAGTATGTTTGCG	ACCICGATG	TIGGATTAAGA	TT
Cix3	AAGATACCTCAGGG	ATAACAG	CGITATACATTIGGAAA	GTIC-ATA	TIGAT-AAAIGIGITIGCG	ACCILGATE	TIGAATTAAGT	TT
C1X4	AAGATACCTCAGGG	ATAACAG	CGITATACATTIGUAAA	GITCIAIA	TIGAT-AAAIGIGIIIGU	ACCICGAIG	TIGAATTAAAG	
C1X6	AAGATACCTCAGGG	ATAACAG		GIIC-IIA	TIAAI-AAAIAIGIIIGUU	ACCIUGAIG	TIGUATIAAAA	
Del 2	AAGATACCTTAGGG	ATAACAG		GIIC-AIA	TATAT-AAATTIGATIGIG	ACCICGAIG	TIGAATTAATC	IA
Del3	AAGATACCTTAGGG	ATAACAG	CGTAATAAATTIGAATA	GIIC-AIA	TIGAT-AAATTIGTTIACU	ACCICUATO	TIGAATTAATA	IA
Del4	AAGATACCICAGGG	ATAACAG	CGITTATTTTGGAAA	GIIC-IIA	TIGAT-AAATTAAATTGCG	ACCICUATO	TIGUATIAATA	IA
DC16	AAGATACCICAGGG	ATAACAG		GIIC-IIA	TIGAT-AAATTAAATTGU	ACCICGAIG	TIGUATIAATA	IA TA
Del/	AAGATACCITAGGG	ATAACAG		GIIC-AIA	TATAT AAATTIGATIUU	ACCTCGATC	TIGAATTAATC	1A 22
ria5 Mac2	AAGATACCITAGGG	ATAACAG	CATAATATAGTIGGAGA	UTIC-AAA	TUGAT-AATTAIGITIGIG	ACCTCCATC		// TT
Mee2	AAGATACCITAGGG	ATAACAG	CUTAATAAATTTUUUUA	OTIC-ATA	TITAL-AAATTIGITUGUG	ACCACCATC		11 TT
Mees	AAGATACCITAGGG	ATAACAG		GTTC ATA	TITAL-AAAIIIUIIIUU	ACCTOCATC	TTUAATTAAAA TTUAATTAAAA	11 TT
Corro	AAGATACCITAGGG	ATAACAG	CUTAATAAATTTOUUUA CCTCATTTATTTCCAAAA	GTTC ATA	TITAL-AAAIIIUIIIUU	ACCTCGATC	TTCCATTAAAA	
Cico	AAUTTACCTTACCC	ATAACAU	COTUATITATITUUAAA COTTATTATTTA & & & &	GTTC TTA	TITAT-AAATAAOTTIOUU TTCATAAAATTACATTOOC	ACCTCCATC	1100A11AA0A	11 99
Cicl	AAATTACCTTACCC	ATAACAG	COTTATIATITIAAAAA CGTAATTTTACTCCCCA	GTTC-IIA	TOATAAAATTAUATTUUU TOTAT_AOTAAATTAUATTUUU	ACCTUDATU	ТТ <u>СА АТТА АСА</u>	ίί ΤΛ
Ciel	TAGTTACCTTACCC	ATAACAC		GTTC ACA	TCTAT-ACTAAATTTTCCC	ACCTOGATE	TTGAATTAAGA	1 A 4 A
Cic3	AAGTTACCTTACCC	ATAACAG	CGTAATTATTATCCCAA	GGTTATAA	TTTAT_A_TAATTTTCCC	ACCTGAATC	TTGAATTAAOU	ΔA
Cic	AGTTACCTTACCC	ATAACAG	CGTAATTACAATGGAAA	GTTC_ATA	TTTAT_ATTGATTTTCCC	ACCTORATE	TTGAATTAACC	TA TA
0107	<74h>	<>	<	<>	<	<>	<90a>	·n <-
		~ /		~ /		- /	- /uu /	-

												569
Ful2		TTCTGTGGG	GTAGGT	TTTACAATA	CT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Fu13		TTCTGTGGG	GTAGGT	TTTACAGTT	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Fu14		TTCTGTGAG	GCAGGT	TTTACAGTT	TA	GGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Fu15		TTCTGTGGG	GTAGGT	TITACAGTT	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Dic1		TTCTGTGGG	GTAGGT	TITACAGTT	ÂĂ	GGGTC	TGTTC	GACTT	TAAAA	TITTACATGATCTGA	GTTCA	GACCGG
Dic2		TTCTGTGGG	GTAGGT	TTCACAGTT	TΔ	ACCTC	TGTTC	GACTT	ΔΤΔΔΔ	TTTTTACATGATCTGA	GTTCA	GACCCC
Dic3		TTCTGTGGG	GTAGGT	TTTACAGTT	TA	AGGTC	TGTTC	GACTT	ATAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Dica		TTCTGTGGA	GTAGG2	9999999999	22	22222	22222	22222	999999		22222	22220
Elo1	т	ATTTGTGGG	GTAGTT	TTTACAATT	TT	AGGTC	TGTTC	99999	999999	9999999999999999999	22222	111111 1999999
Flat	Тл.	ATTGTGGG	GTAGT	TTTACAATT	TT	AGGTC	TGTTC	GACC2	999999	9999999999999999999	22222	111111 1999999
Flag	Т	ATTIGICCO	GTAGTT	TITACAATT	CT	AGGTC	TGTTC	GACCT	ΤΛΛΛΛ	TTTTACATGATCTGA	GTTCA	GACCEG
Fla/	т - ТА	ATTGTGGG	GTAGT	TTTACAATT	TT	AGGTC	TGTTC	GACTT	ТАЛАЛ	TTTTACATGATCTCA	GTTCA	GACCOO
De18	Δ_	ATTTTTGGA	GCAGAA	GOTAGAATT	TT	AGGTC	TATAC	GACTT	TTTAA	TATTACATGATCTGA	GTTCA	GACCOG
Nog1	Δ_	AGCTIGTIGGG	GTAGGT	TTTACAGTT	TT	AGGTC	TGTTC	GACTT	ΤΔΔΔΔ	TTTTACATGATCTGA	GTTCA	GACCCG
Nog2	Т-	TGCTATGGG	GTAGGT	TITTATAGTT	ŤŤ	AGGTC	TGTTC	GACTT	ΤΔΔΔΔ	TTTTTACATGATCTGA	GTTCA	GACCGG
Ach1	·	AATTGTGGG	GTAGG?	222222222222222222222222222222222222222	$\frac{1}{22}$	22222	22222	22222	22222	1111110110110110101	22222	22222
Ach2	Т-	GTTTGTGGG	GTAGGT	TTTACAAAT	ĊТ	AGGTC	TGTTC	GACTT	ΤΑΑΑΑ	TTTTTACATGATCTGA	GTTCA	GACCGG
Derl		AATTGTAAG	GTAGGT	TITACAATG	TT	AGGTC	TGTTC	GACTT	ТАААА	TTTTTACATGATCTGA	GTTCA	GACCGG
Der2	Т-	ATTTATGGG	GTAGGT	ТТСАТААТА	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Der3		AATTGTGAG	GTAGGT	TTCACAATG	ΤT	AAGTC	TGTTC	GACTT	ТАААА	TTTTTACATGATCTGA	GTTCA	GACCGG
Der4		ATGTATGAG	GTAGGT	TTCATATTA	ΤŤ	AGGTC	TGTTC	GACTT	ТАААА	TTTTTACATGATCTGA	GTTCA	GACCGG
Der9		AATTGTGAG	GTAGGT	TTCACAATG	ŤŤ	AAGTC	TGTTC	GACTT	TAAAA	TTTTTACATGATCTGA	GTTCA	GACCGG
Trol	Τ-	TTTTGTGGG	GTAGGT	TTCACAATA	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Tro2	Ť-	TTTTGTGGG	GAAGGT	TTCTCAATA	AT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Tro3	Ť-	GTTTATGGG	GTAGGT	TTCATAATT	CT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Tro4	Ť-	TTTTGTGGG	GTAGGT	TTCACAATA	ΑT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Ricl	Т-	GTTTGAGGG	GTAGGT	TITACAGTT	TΤ	AGGTC	TGTTC	GACTT	TAAAA	TITTACATGATCTGA	GTTCA	GACCGG
Ric3	Т-	GTTTGTGGG	GTAGGT	TITACAATT	CT	AGGTC	TGTTC	GACTT	TAAAA	ATTTACATGATCTGA	GTTCA	GACCGG
Ric4	Τ-	GTTTGTGGG	GTAGGT	TTCACAATT	CT	AGGTC	TGTTC	GACTT	TAAAA	ATTTACATGATCTGA	GTTCA	GACCGG
Ric5	Τ-	GTTTGTGGG	GTAGGT	TITACAAAA	CT	AGGTC	TGTTC	GACTT	TAAAA	ATTTACATGATCTGA	GTTCA	GACCGG
Eurl	Τ-	GGTTGTGGG	GTAGGT	TITACAATT	CT	AGGTC	TGT??	?????	?????	???????????????????????????????????????	?????	??????
Lopl	А-	ATTTGTGGG	GTAGGT	TCTACAATT	TT	AGGTC	TGTTC	GACC?	?????	???????????????????????????????????????	?????	??????
Tc12	Τ-	AATTGTGGG	GTAGGT	TTTACAAGT	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Iss1	Τ-	TACTGTGGG	GTAGGT	TITACAGTT	TΤ	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Iss5	Τ-	TACTGTGGG	GTAGGT	TITACAGTT	TΤ	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Iss9	Τ-	TACTGTGGG	GTAGGT	TITACAGTT	TT	AGGTC	TGTTC	GACTT	TAAAA	CTTTACATGATCTGA	GTTCA	GACCGG
Iss10	Τ-	TACTGTGGG	GTAGGT	TTTACAGTT	TT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Iss2	Τ-	TACTGTGGG	GTAGGT	TITACAGTT	GT	GGGTC	TGTTC	GACTT	TAAAA	ATTTACATGATCTGA	GTTCA	GACCGG
Iss11	А-	TTTTGTGGG	GTAAGT	TITACAATT	ΤT	AGGTC	TGTTC	GACTT	TAAAT	AGTTACATGATCTGA	GTTCA	GACCGG
Iss12	Τ-	TACTGTGGG	GTAGGT	TITACAGTT	GT	AGGTC	TGTTC	GACTT	TAAAA	TTTTACATGATCTGA	GTTCA	GACCGG
Iss3	Τ-	ATTTGTGGG	GCAGTT	TITACAATC	ΤT	AGGTC	TGTTC	GACTT	TAAAA	GTTTACATGATCTGA	GTTCA	GACCGG
Iss14	Τ-	ATTTGTGGG	GCAGTT	TITACAATT	TΤ	AGGTC	TGTTC	GACTT	TAAAA	ATTTACATGATCTGA	GTTCA	GACCGG
Iss4	А-	ATTTGTGGG	GTAGAT	TTTACAGTT	ΤT	AGGTC	TGTTC	GAC??	?????	???????????????????????????????????????	?????	??????
Iss6	A-	ATTTGTGGG	GTAGAT	TTTACAATT	ΤT	AGGTC	TGTTC	GACTT	TAAAA	AATTACATGATCTGA	GTTCA	GACCGG
Iss7	A-	ATTTGTGGG	GTAGAT	TTTACAATT	TT	AGGTC	TGTTC	GACTT	TAAAA	AATTACATGATCTGA	GTTCA	GACCGG
Iss8	A-	TTTTGTGGG	GTAGG?	???????????????????????????????????????	??	?????	?????	?????	?????	<u> ????????????????????????????????????</u>	?????	??????
Cix2	A-	ATAATTGGG	GCAGAA	GATTATITA	TT	AGGTC	TGTTC	GACTT	TAAAA	TCTTACATGATCTGA	GTTCA	GACCGG
Cix3	Τ-	AATIGIGGA	GCAGAA	ТАТАСААТА	TT	AGGIC	TGTTC	GACIT	TAAAA	ATTTACATGATCIGA	GITICA	GACCGG
Cix4	Τ-	AATIGIGGA	GCAGAA	TATACAATG	TT	AGGIC	TGTTC	GACIT	TAAAA	ATTTACATGATCIGA	GITCA	GACCGG
C1x6	T-	AATIGIGGA	GCAGAA	TATICAAAG	TT	AGGIC	TGTTC	GACTT	TAAAA	TTTTACATGATCIGA	GITCA	GACCGG
Del2	G-	AATICIGGA	GCAAAA	AA?????????	??	22222	22222	22222	22222	11111111111111111111111111111111111111	?????	777777
Del3	A-	AATTTTAGA	GCAGAA	ACITAAAGT	TT	AGGIC	TGTTC	GACTT	TAAAT	ATTTACATGATCIGA	GITCG	AGCCGG
Del4	A-	GITTTIGGT	GTAGAT	GATAATTAA	CT	AGGIC	TGTTC	GACTT	TAAAA	TTTTACATGATCIGA	GITCA	GACCGG
Del6	A-	GITTIGGI	GIAGAT	GATAATTAA	CT	AGGIC	TGTTC	GACTT	TAAAA	TTTTACATGATCIGA	GITCA	GACCGG
De l'7	G-	AATTCIGG-	777777	777777777	??	77777	77777	77777	77777	777777777777777777	??????	777777
FIAD	// T	77777777777777777777777777777777777777	(/////		// 	77777	11111	11111	11111	///////////////////////////////////////	11111	111111
Mee2	1 - T	TUGUAGGGG	CAAGOT	TITICIAL	AI	TCCTC	///// TC900	1111	1111	///////////////////////////////////////	11111	000000
Mees	1- T		CAACOT	TITITUAL	AL	TUUIC	TO / / /	CACTE	11111 TAAAA		CTTCA	
мееб	1-		CTACCT	TITITUAL	AL	IGUIC	10110	UAUTI	1888	1111ACATGATCIGA	ULICA	UACCOU
Cias	A- 22	0000A1AA000	UUDATU 222200	11111A???	// 20	1111	11111	99999	99999		11111	111111
Cici	1 1 A	1111111111 A A A A A A A CA A	GCAG22		22	2222	11111	11111	99999		22222	111111 1999999
Cicl	Λ- Δ	GATTANGAA	GCAGAA	TTCTTAACT	CT		ΤΤΛΛΛ	TOOT?	99999	999999999999999999	11111 22222	111111 2222
Cica	n-	TAGTTTGAG	TTTT	(GACTITITA)		TTCTT	ACTTG	ATCT?	22222	999999999999999999	22222	1111111 22222
Cic4	ΑA	TTTTTAGAG	TCTGTT	CGACTITTA	AA	TCCCT	ACTTG	ATCT?	22222	222222222222222222222222222222222222222	22222	222222
	->	<91a>	<>	<91b>	\diamond	<92a>	<>	<92b>	<>	<>	<>	<93a->