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Abstract We can precisely predict the future dynamics of
populations only if we know the underlying mechanism
of population dynamics. Long-term data are important
for the elucidation of such mechanisms. In this article we
analyze the 50-year dynamics of annual light-trap catches
of three insect pest species living in paddy fields in Japan:
the rice stem borer, Chilo suppressalis (Walker) (Lepi-
doptera: Pyralidae); the green rice leafhopper, Neph-
otettix cincticeps (Uhler) (Hemiptera: Deltocephalidae);
and the small brown planthopper, Laodelphax striatellus
(Fallén) (Hemiptera: Delphacidae). We separate the
long-term dynamics into two components by using
locally weighted scatterplot smoothing: (1) the underly-
ing dynamics of populations, and (2) the influence of the
past changes in the environment. The former component
is analyzed by response surface analysis and vector
autoregression to evaluate the nonlinearity of density-
dependence and the inter-specific influence of density,
respectively. On the basis of these analyses, we perform
the state-space model analyses. The state-space model
selected by Akaike’s information criterion indicates that
the observed number of light-trap catches of C. sup-
pressalis and N. cincticeps in summer increases with
increasing temperatures in the previous winter. It also
indicates that the influence of temperature is not carried
over to the next year. We utilize the selected model to
predict the impact of global warming on these species, by

substituting the temperature predicted by a general
circulation model.
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Introduction

The study of the mechanism of population regulation
has a considerable history. This was most clearly sum-
marized by Turchin (1995, 2003). He wrote that: ‘‘time
series analysis of population fluctuations can be traced
to the famous debate about population regulation,
which crystallized at the 1957 meeting in Cold Spring
Harbor.’’ In this debate, Nicholson (1954) claimed that
the population density is regulated by density-dependent
mechanisms. Elton (1949) supported Nicholson’s views.
Andrewartha and Birch (1954), however, disagreed with
Nicholson. They claimed that a general theory cannot be
based on density-dependent factors because they do not
describe any substantial body of empirical facts. Re-
cently, this old debate has reappeared, as seen in the
controversy between Murray (1999), Turchin (1999) and
others (Selås et al. 2001; White 2001; Berryman et al.
2002; Hixon et al. 2002; Berryman 2004; White 2004).

Most analyses of long-term terrestrial dynamics seem
to be confined to the study of forest insects and verte-
brates (e.g., Royama 1992; Bjørnstad et al. 1995; Turchin
2003; Royama et al. 2005) with a few exceptions such as
described in Alyokhin et al. (2005). The dynamics of in-
sect pest populations living in agricultural environments
have not been so widely analyzed over the long-term, due
partly to the frequent change in agricultural environ-
ments; agricultural practices frequently change as agro-
technology progresses or due to other economic factors,
and the abundance of insects changes accordingly. We
generally have a dilemma in this respect. Long-term data
are preferable for estimating the mechanism of popula-
tion dynamics, but environmental conditions change
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over a long period. The resultant population dynamics
will be a mixture of two components: (1) exogenous
dynamics that are driven by a change of environment,
and (2) endogenous dynamics that are driven by the
intrinsic mechanism. If we could remove the dynamics
caused by exogenous factors by using a smoothing
technique, we would be able to clarify the underlying
mechanism of population dynamics.

In this paper, we analyze the dynamics over a period
of 50 years of three insect pest species in paddy fields: the
rice stem borer, Chilo suppressalis (Walker) (Lepidop-
tera: Pyralidae); the green rice leafhopper, Nephotettix
cincticeps (Uhler) (Hemiptera: Deltocephalidae); and the
small brown planthopper, Laodelphax striatellus (Fallén)
(Hemiptera: Delphacidae). We demonstrate how insect
population dynamics can be analyzed from different
angles. For convenience, in our explanation we proceed
from models that are simple in principle to those which
are more complicated. We first discuss the importance of
appropriate transformation to enhance additivity and
homoscedasticity. We next perform the preliminary test
for density-dependence, which is a traditional topic in
population ecology. Then, we apply an analysis using the
generalized additive model (GAM), which automatically
determines the smoothing parameter. After discussing
the limitation of such automated analyses, we perform
the empirical smoothing where empirical knowledge is
used to determine the smoothing parameter. All further
analyses are performed using the difference between the
observed quantity and the smoothed quantity. Response
surface analysis is then performed for each species by
considering the possibility that the density-dependent
regulation is nonlinear. This analysis indicates that the
mechanism causing the dynamics of C. suppressalis and
N. cincticeps is mostly linear. Next, in order to consider
the possibility of interspecies interaction in the dynamics,
we perform linear vector autoregression analysis (VAR).
Measurement errors are ignored in these analyses where
the measurement error is defined as a component that
influences an observation without influencing the obser-
vation of the subsequent year. We next incorporate such
measurement errors into VAR to clarify the mechanism
generating the influence of temperature. This analysis
indicates that temperature most influences measurement
errors and that it does not strongly influence the abun-
dance of the next year. It indicates that the fluctuation in
the ‘‘observed’’ population is influenced by the climatic
fluctuation as was claimed by Andrewartha and Birch
(1954) but that the underlying ‘‘true’’ population is reg-
ulated in a density-dependent manner across years, as
was claimed by Nicholson (1954).

The estimated model for population dynamics can be
utilized for various purposes. Predicting outcomes of
global warming will be one of the major fields to employ
such applications. Future climatic change caused by an
increase in the atmospheric concentration of greenhouse
gas including CO2 is usually predicted by using global
climate models (GCM), especially atmosphere–ocean
GCM, that simulate the substantial circulation of the

atmosphere and oceans. The intergovernmental panel on
climate change (IPCC), in its third assessment report
published in 2001, used models based upon the latest
emissions scenarios from the IPCC special report on
emission scenarios (SRES) (IPCC 2001). For the full
range of 35 SRES scenarios, based upon a number of
climate models, the globally averaged surface tempera-
ture was projected to increase by 1.4–5.8�C over the
period 1990–2100. We substitute the temperature data
that were predicted by GCM into the estimated popu-
lation models to predict the outcome of global warming;
we predict the populations in the period from 2031 to
2050 relative to those in the period from 1980 to 2000.
We further predict the amount of relative yield loss
caused by C. suppressalis.

Materials and methods

Light trap survey

A light-trap survey was carried out at Ibaraki Prefectural
Experiment Station at Mito (36�16¢N and 140�20¢E) in
line with the project standards for forecasting pest inci-
dence (Ministry of Agriculture Forestry and Fisheries
1986). We use the annual total catches (May–September)
of 1949–2001 for three principal insect pests in paddy
fields: C. suppressalis, N. cincticeps, and L. striatellus.
The data from 1957 to 2001 are cited from the annual
report of the experiment station (Ibaraki Prefecture
1957–2001), and the data from 1949 to 1956 are cited
from the data compiled by Ôtake (unpublished data) of
annual totals of important rice pest insects caught in light
traps in Japan. The data for L. striatellus in 1949 are
absent. No catch was recorded for C. suppressalis in
1987. We omit these data when we use the ordinary least
squares (OLS) method for estimating parameters, while
missing quantities are automatically interpolated when
we use Kalman filter algorithms in later sections. To
evaluate the effect of climatic factors on population
dynamics, we use the climatic data recorded by the Mito
Local Meteorological Observatory (36�23¢N, 140�28¢E).

Insect species

The rice stemborer,C. suppressalis, is amothwith a length
of 12–15 mm.This species has two generations in a year in
most areas of Japan.Matured larvae, which overwinter in
the dried rice straw in fields (Kojima and Emura 1971),
emerge from May to July to lay their egg mass. Hatched
larvae enter the stem, sometimes causing the death of the
leaf sheath or the death of the growing point. These larvae
emerge from August to September. The larvae of the
second generation cause the production of sterile grains or
the death of young ears. Various studies were conducted
during the 1950s to clarify the population dynamics of
C. suppressalis (Fukaya 1950a, b; Ishikura 1950a, b, 1951;
Fukaya et al. 1954; Utida 1954, 1957a, b, 1958;Miyashita
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1955; Fukaya and Nakatsuka 1956). The increase in the
population density over several successive years, called
‘‘gradation’’, has been frequently observed in this species
(Ishikura 1951). Miyashita (1955) detected a 6-year cycle
in the population dynamics of Shimane Prefecture, but no
clear cycles have been detected in most prefectures (Itô
1968). Centrifugal spatial spread of infested areas was
observed over several years during the gradation period in
the Kyushu district of Japan (Kiritani and Oho 1961).
Climatic factors such as the low temperatures in July have
been thought to responsible for the cause of the initiation
of gradation ofC. suppressalis (Ishikura 1950b;Miyashita
and Itô 1961).

The green rice leafhopper, N. cincticeps, is a sucking
insect with a length of 4.5–6 mm. This species has three
or four generations in a year. In winter, the leafhopper
lives on grass weeds such as Poa annua L. and Alope-
curus aequalis Sobol. in the overwintering nymphal
stage, mainly of the fourth stage. These weeds provide
both food and habitat for N. cincticeps in late winter.
This species has been considered a typical insect, the
density of which is regulated by a density-dependent
process (Kuno 1968). The density-dependent dispersal of
adults of the second generation is one of the mechanisms
of negative feedback at work in the Kyushu district in
Japan (Hokyo 1972). N. cincticeps is a serious pest as it
is the vector of the rice dwarf virus in central and wes-
tern parts of Japan. The fluctuation of the population is
relatively large in the Tohoku and Hokuriku districts,
occasionally causing a yield loss as a consequence of the
direct sucking by the insects, or via the sooty mould that
emerges on their excretions (Johraku et al. 1976, 1983;
Kidokoro 1979; Johraku 1984; Hirano and Fujii 1995).
The length of the snow-covered period and the abun-
dance of weeds in winter is considered to be one of the
major factors determining their abundance in the Hok-
uriku district (Oda 1971; Johraku and Kato 1974; Imai
1976; Johraku 1976; Sekiguchi et al. 1981).

The small brown planthopper, L. striatellus, is a
sucking insect with a length of 3–4 mm. This species has
about five generations in a year in the Ibaraki Prefecture.
The abundance of this species is very influenced by the
existence of wheat or barley fields. The planthopper en-
ters diapause in the nymphal stage in levees around fal-
low paddy fields in winter (Murakami and Suzuki 1971).
In the Kanto district, brachypterous and macropterous
adults emerge from the levees from March to April and
enter wheat or barley fields. These adults lay eggs which
in turn yield the first-generation macropterous adults
from May to June. Wheat is an especially good food for
this species. These macropterous adults then emigrate to
paddy fields that are transplanted with rice from May to
June (Kisimoto and Yamada 1986). Although the rice
plant is less preferred as a food by this species, three or
four generations of these insects are produced in the
paddy fields. Nymphs of the final generation enter dia-
pause, induced by a short-day photoperiod at low tem-
peratures, and move to levees where they overwinter.
L. striatellus is a serious pest as the vector of the rice

stripe virus (RSV). The occurrence of this disease is
determined by a complex interaction between three bio-
logical entities: the rice plant, the virus, and the insect.
Several epidemiological models have been constructed to
predict the disease’s prevalence (Kono 1966; Muramatsu
1979; Kisimoto and Yamada 1986, 1988; Taira et al.
1995; Yamamura 1998).

Transformation

We first perform transformations to improve the addi-
tivity and homoscedasticity of the time-series. Various
forms of transformation could be used, including a
square root transformation, a logarithmic transforma-
tion and, more generally, the Box–Cox transformation
(1964). Among these, a logarithmic transformation is
usually preferred when analyzing population dynamics
for the following reasons. Most populations change by
multiplicative factors such as the mortality and birth
rates. The logarithmic transformation makes a multi-
plicative factor into an additive factor. Therefore, if we
use logarithmic transformation, we are able to use an
additive model, which is analytically more tractable.
Simultaneously, homoscedasticity arises in most cases
because the multiplicative error factor becomes additive
by a logarithmic transformation. Thus, we use a loga-
rithmic transformation in the following analyses. To
solve the problem that arises from the discreteness of the
number of individuals, we use log(x+0.5) where x is the
number of individuals, although most people tradition-
ally use a transformation of the form log(x+1), which is
less preferable (Yamamura 1999). We use a common
logarithm log10(x+0.5) instead of a natural logarithm
loge(x+0.5) so that we are able to easily back-transform
the variable using mental calculations.

Test for density-dependence

Testing density-dependence and testing the hypothesis
of random walk are two sides of the same analysis,
because a random walk is a situation where there is no
density-dependence. We are liable to detect a significant
correlation between two time-series, even if they are
independent, if they have stochastic trends caused by a
random walk. Such a regression is called ‘‘spurious
regression’’ in the field of econometrics (Greene 2000).
A preliminary test to detect a random walk is required
in order to avoid a spurious regression. Various testing
procedures collectively referred to as ‘‘unit root tests’’
have been developed for this purpose (Greene 2000;
Hayashi 2000; Maddala 2001). Recent versions of sta-
tistical software for econometrics such as EViews,
LIMDEP, SHAZAM, SAS, Stata, or TSP provide sev-
eral unit root tests (SAS Institute 1993; Greene 2002;
Stata Corp 2003; Quantitative Micro Software 2004;
Whistler et al. 2004; Hall and Cummins 2005).

In ecological literature, the difficulty that arises in the
detection of density-dependence was first discussed by

33



Maelzer (1970) and St. Amant (1970). The test statistics
calculated from the regression do not follow a standard
distribution such as the t-distribution. Hence, various
methods, including those of Bulmer (1975) and Pollard
et al. (1987), have been proposed as alternative tests (see
Den Boer and Reddingius 1996 for the review of earlier
literature in ecological journals). To further complicate
matters, measurement errors also yield a bias in the
estimation of density-dependence (Kuno 1971; Fuller
1987; Den Boer and Reddingius 1996; Shenk et al. 1998;
Solow 1998, 2001). We will discuss the bias caused by
measurement errors in estimating parameters in later
sections. Initially, however, we ignore measurement er-
rors as we test the null hypothesis of random walk,
considering the influence of measurement errors to be
relatively small in such extreme cases. Then, we can use
several standard procedures such as the Dickey–Fuller
test, augmented Dickey–Fuller test, and Phillips–Perron
test. Among these, we apply the Dickey–Fuller test that
is most widely used in econometrics (Dickey and Fuller
1979; Greene 2000; Maddala 2001). Let Nt be the
transformed quantity, in the form of log10(x+0.5), of
the total number of captured individuals of a species in
year t. We first consider the following model:

Nt ¼ a0 þ a1Nt�1 þ et; et � Nð0; r2Þ; ð1Þ
where a0 and a1 are constants, and et denotes an error
that follows a normal distribution. The null hypothesis is
a1=1 while the alternative hypothesis is a1<1.

The P-value that was evaluated by the approximation
described by MacKinnon (1994) was 0.811 for C. sup-
pressalis. Thus, no significant density-dependence was
detected; we cannot discard the hypothesis that the
population dynamics of C. suppressalis shown in the
upper panel in Fig. 1 were generated by a random walk.
In contrast, we found P<0.001 for N. cincticeps, indi-
cating that the dynamics of N. cincticeps is regulated by
a density-dependent mechanism, and P=0.072 for
L. striatellus, indicating that the density-dependence is
only marginally significant.

Additive model

Most techniques for conventional time-series analyses
assume that the time-series is stationary. Hence, non-
stationary time-series are conventionally converted into
stationary time-series by removing the trend before
performing an analysis. However, such a procedure is
not always appropriate. Many times-series show trends,
which are one of two types: stochastic trends that are
generated by a random walk and deterministic trends
that are generated by a change in exogenous factors.
The removal of trends is effective only for deterministic
trends. The above unit root test for C. suppressalis
indicated that the dynamics of this species may have a
stochastic trend that was generated by a random walk.
If this is true, removing the trend before analysis would

generate an artificial stationary time-series. However,
empirically we consider that the biological components
of the dynamics will not be a random walk. There is a
long history of pest management practices used against
C. suppressalis. The population of C. suppressalis will
rather fluctuate around the potential equilibrium that is
determined by the balance between the efficiency of pest
management and the reproductive rate of insects. This
potential equilibrium may fluctuate continuously by a
random walk, but the biological dynamics of C. sup-
pressalis around the equilibrium will not be a random
walk. Thus, we will be able to assume that the trend is
deterministic but not stochastic. Then, we divide the
observed dynamics into two components: (1) the
dynamics of environmental factors influencing the po-
tential equilibrium of insect pests, and (2) the biological
dynamics of insect pests in a given environment.
Here we are interested in the influence of temperature,
and hence include it in the second component. In the
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Fig. 1 Population dynamics of Chilo suppressalis (logarithmic
scale). Upper panel Observed annual number of individuals caught
by a light trap, log10(x+0.5). Thin curve Locally weighted
scatterplot smoothing (LOWESS) selected by generalized cross-
validation (GCV) criterion in the full additive model (Eq. 2). Bold
curve LOWESS selected by GCV criterion in the null model (Eq. 3).
Dotted curve LOWESS calculated by a normal kernel with a SD of
5 years. Lower panel Deviation (Dt) between log10(x+0.5) and the
LOWESS that was calculated by a normal kernel with a SD of
5 years

34



first component, we include only those environmental
factors that are beyond our major interest; these factors
can be called ‘‘nuisance factors’’. For example, the
density of insect pests will become much smaller if the
area of paddy field is reduced due to changes in land
use. Such an artificial reduction is a nuisance factor
in the sense that we need not explain the reason for that
reduction. In order to isolate those factors that we
need to explain, our first concern is to consider how we
might automatically remove the influence of nuisance
factors.

Two kinds of procedures are usually used to remove
these trends (Brockwell and Davis 2002): one is a finite
difference procedure, the other is a smoothing proce-
dure. The finite difference procedure, largely derived
from Box and Jenkins (1970), uses artificial assumptions
in most cases, although they are not always explicitly
noted. For example, the time-series may become sta-
tionary when a first-order difference such as Nt�Nt�1 is
used. In this case, we implicitly assume that the differ-
ence is not determined by the previous quantities of
variables but by the previous difference between vari-
ables. However, there would be no clear reason for the
difference to become the cause of the next difference. In
this respect, smoothing procedures will logically be more
appropriate than difference procedures in most cases.
We use a smoothing procedure to divide the dynamics
between those components that are environmental nui-
sance factors and those that are biological factors.

We are interested in the influence of a temperature
rise on the abundance of these populations. Hence, we
additionally include temperatures as exogenous vari-
ables in the analysis. It may be preferable to treat the
temperature of each month separately because the tem-
perature in different months is likely to influence the
dynamics differently. A considerable number of regres-
sion analyses were performed before the 1970s to explore
the influence of the environmental factors of each
month on the abundance of C. suppressalis (Ishikura
1950b; Fukaya and Nakatsuka 1956). However, most of
these analyses seem unsuccessful, in part due to the
multiplicity that arises with multiple testing. In order
to avoid such problems, we divide a year into only two
seasons: the previous November–April and May–Octo-
ber, referred to as the ‘‘winter season’’ and the ‘‘summer
season’’, respectively. The summer season corresponds
to that period during which rice is cultivated, while the
winter season corresponds to that period when insects
live outside paddy fields. We denote the mean temper-
ature of the previous winter season (W) and summer
season (S) in year t by sWt and sSt, respectively. We use
the following model by including lags of up to 2 years:

Nt ¼ a0 þ a1Nt�1 þ a2Nt�2 þ f ðtÞ þ bWsWt þ bSsSt þ et;

et � Nð0; r2Þ; ð2Þ

where bW and bS are constants. f(t) is a smoothed quantity
at year t. Two categories of smoothing procedures are
usually available: (1) smoothing spline, and (2) local

regression. The former procedure assumes a situation
where some penalty, such as repulsion force, arises when
we bend the curve. The smoothness of the curve becomes
large if the repulsion to bending is large, while the
smoothness becomes small if the repulsion force is small.
The latter procedure, sometimes called locally weighted
scatterplot smoothing (LOWESS) after Cleveland (1979)
in the broad sense, assumes that the trend consists of local
linear components or polynomial components. The
smoothness becomes large if the duration of a component
is long, while the smoothness becomes small if the dura-
tion of a local component is short. As will be discussed
later, it is more reasonable to opt for the assumption of
LOWESS to remove the dynamics of environmental
components from the time-series of populations.Then,we
adopt LOWESS as f(t) in the estimation of the parameters
of Eq. 2.Weuse ProcGAMof the statistical software SAS
(SAS Institute 2001). The optimal smoothness is deter-
mined by using generalized cross-validation (GCV) that
was originally proposed by Craven and Wahba (1979). A
tricube weight function is used as the kernel function in
Proc GAM. We might alternatively use a Poisson distri-
bution with a logarithmic link in an arithmetic scale, in-
stead of using a normal distribution in a logarithmic scale,
by using the framework of GAM (Chambers and Hastie
1991). Fewster et al. (2000) used a quasi-likelihood ap-
proach using a Poisson distribution in applying GAM to
data from the common bird census of the British Trust for
Ornithology. However, we do not use a Poisson distri-
bution in our analysis because the actual distribution will
not follow a Poisson distribution with a constant overdi-
spersion as is assumed in the quasi-likelihood approach.
This problem will be discussed in more detail later in this
paper.

The estimated parameters were quite different among
the species (Table 1; thin curves in the upper panels of
Figs. 1, 2, and 3). The first-order lagged term was

Table 1 Estimated parameters in the additive model given by Eq. 2
(where a, and b are constants). W Winter, S summer

Species Parameter Estimate SE P

Chilo suppressalis a0 0.247 1.291 0.850
a1 0.630 0.133 <0.001
a2 �0.199 0.140 0.164
bW 0.124 0.059 0.043
bS 0.016 0.064 0.806
r2 0.074

Nephotettix cincticeps a0 0.647 2.560 0.802
a1 0.007 0.118 0.955
a2 0.055 0.121 0.654
bW 0.148 0.111 0.190
bS 0.140 0.119 0.245
r2 0.265

Laodelphax striatellus a0 �1.814 1.927 0.352
a1 0.351 0.111 0.003
a2 �0.234 0.111 0.041
bW �0.165 0.098 0.099
bS 0.263 0.102 0.014
r2 0.211
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significant for C. suppressalis (P<0.001). Both the first
and second lagged terms were significant for L. striatellus
(P=0.003 and 0.041, respectively). However, no lag term
was significant for N. cincticeps, indicating that the
population abundance of this species does not depend on
past dynamics. The influence of temperature is significant
for C. suppressalis and L. striatellus. The population of
C. suppressalis becomes larger with increasing winter
temperature (P=0.043), while that of L. striatellus be-
comes larger with increasing summer temperature
(P=0.014).

It should be noted that the smoothed curve achieved
by using GAM changes greatly if we do not incorporate
appropriate factors into the model. The bold curves in
the upper panels of Figs. 1, 2, and 3 indicate the
smoothed curves that were estimated under the follow-
ing null model:

Nt ¼ a0 þ f ðtÞ þ et; et � Nð0; r2Þ: ð3Þ
In the analysis of C. suppressalis, the components that
should be attributable to factors such as the lagged
population are automatically incorporated into the
smoothed curve f(t). Consequently, the f(t) curve
becomes very variable; the curve is very close to the ob-
served quantity. A similar phenomenon occurs in the
analysis of L. striatellus. In contrast, in the analysis of

N. cincticeps, the smoothed curve that was estimated
from the null model was close to the curve that was
estimated from Eq. 2, because the null model is eventu-
ally the same as that selected by GCV for this species.

Empirical smoothing

The smoothing procedure using GAM will be useful as
indicated above, but it appears to have a shortcoming;
we cannot correctly estimate the influence of non-nui-
sance factors if there is a correlation between the time-
series of non-nuisance factors and that of nuisance
factors. In our case, the change in temperature corre-
lates with nuisance factors. Actually, the temperature
has increased during the past 50 years (Fig. 4). When
we perform smoothing to remove the influence of
nuisance factors, the influence of a temperature rise is
simultaneously partially removed. Hence, the influence
of global warming will be underestimated if we use
GAM. Let Nt, sWt, sSt be the vectors containing the
time-series of Nt, sWt, and sSt, respectively. Let us de-
note f(t) by a more precise expression, f(Nt). Then, if
we smooth the factors other than Nt�1, Nt�2, sWt, and
sSt, the relation is given by:
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Fig. 2 Population dynamics of Nephotettix cincticeps (logarithmic
scale). For an explanation of the curves, see Fig. 1
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Fig. 3 Population dynamics of Laodelphax striatellus (logarithmic
scale). For an explanation of the curves, see Fig. 1
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Nt ¼a0 þ a1Nt�1 þ a2Nt�2

þ f ðNt � a1Nt�1 � a2Nt�2 � bWsWt � bSsStÞ
þ bWsWt þ bSsSt þ et:

ð4Þ

We can use the following relation because LOWESS is
additive:

f ðNt � a1Nt�1 � a2Nt�2 � bWsWt � bSsStÞ
¼ f ðNtÞ � a1f ðNt�1Þ � a2f ðNt�2Þ � bWf ðsWtÞ
� bSf ðsStÞ:

ð5Þ

Then, by substituting Eq. 5 into Eq. 4, we obtain the
following relation:

Nt � f Ntð Þ½ � ¼ a0 þ a1 Nt�1 � f Nt�1ð Þ½ �
þ a2 Nt�2 � f Nt�2ð Þ½ �

þ bW sWt � f sWtð Þ½ � þ bS sSt � f sStð Þ½ � þ et:
ð6Þ

Thus, we can estimate the parameters by applying
smoothing to temperatures as well as logarithmic popu-
lations by using the same function for smoothing. Let us
denote the difference between the observed and
smoothed quantities by Dt=Nt�f(Nt), TWt=sWt�f(sWt),
and TSt=sSt�f(sSt). Then, we can express the above
equation by a simpler form:

Dt ¼ a0 þ a1Dt�1 þ a2Dt�2 þ bWTWt þ bSTSt þ et: ð7Þ

It currently seems difficult to automatically estimate
the optimal function f of the form of Eq. 6. In order to
empirically determine the function f, we should therefore
discuss which nuisance factors caused the population
decline in these species during the past 50 years. Several
changes in cultivation practices are said to be the cause
of this decline although the exact reason is not known
(Miyashita 1982). Two agricultural machines, the com-
bine harvester and the rice planting machine, are known
to be related to the population decline of C. suppressalis.
The larvae of C. suppressalis overwinter in the dried stem
of rice plants (Kojima and Emura 1971). A combine
harvester kills such larvae when it cuts the stems of rice
plants. A rice-planting machine is used for younger
seedlings, which are not suitable for the development of
larvae (Yuno and Johraku 1975, 1976). Thus, the prev-
alence of these machines reduces the survival rate of the
larvae of C. suppressalis. In addition, spraying
the seedling plate used in mechanical planting reduced
the survival of larvae. Figure 5 shows that the use of
these machines took 10 or 15 years to spread among
farmers (Ministry of Agriculture Forestry and Fisheries
1970–1990, 1970–1995). The use of industrial chemicals
also seems to have taken several years to become pop-
ular. For example, the change in how pesticides are
applied gradually changed the percentage of egg-
parasitism of C. suppressalis over 10 years (Nozato and
Kiritani 1976); it was about 60% before 1955 but had
decreased to a new equilibrium level of about 20% by
about 1965. Thus, we can roughly anticipate that the
decline of insect pests will be the value generated by the
sum of local declines that continued for about 10 years.
Some components have large slope while the slope of
other components is small. The sum of these slopes
gradually changes as it reflects the era. Therefore, we use
a normal kernel with the SD of 5 years in applying
first-order LOWESS. We use SAS/INSIGHT for the
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calculation of the fixed-width LOWESS (SAS Institute
1995). The smoothed curves are shown by broken lines
in the upper panels of Figs. 1, 2, and 3. The dynamics of
Dt are shown in the lower panels. We proceed to the
analyses using Dt in the remaining sections.

Nonlinearity

We previously considered only the linear terms of lagged
populations. However, the influence of density may be
nonlinear. Several methods have been developed to
evaluate the nonlinear dynamics of population in a noisy
environment. Among these methods, the response sur-
face method (RSM) that was proposed by Turchin and
Taylor (1992) is recommended for data sets of 20–50
points (Hastings et al. 1993; Ellner and Turchin 1995).
Turchin and Taylor’s original RSM is the generalization
of a polynomial regression in which the independent
variables, including lagged population, are transformed
using the Box–Cox family of power transformation.
However, this model can be oversensitive to changes in
data (Perry et al. 1993), so we adopt a simpler model
proposed by Perry et al. (1993):

Dt ¼ a0 þ a1Dt�1 þ a2Dt�2 þ a11D2
t�1 þ a22D2

t�2
þ a12Dt�1Dt�2 þ bWTWt þ bSTSt þ et: ð8Þ

The actual form of a nonlinear function is not known in
most cases, but we can describe any nonlinear function
by using a Taylor series to the infinite order. Then, we
can approximately express the function by using the
smaller order terms in the Taylor series expansions. In
using Eq. 8, we are adopting the second-order polyno-
mials as an approximation of unknown nonlinear
functions. The parameters in this equation are estimated
by using the OLS method assuming that the distribution
of et obeys a normal distribution with consistent vari-
ance. The most critical step of RSM analysis is the
selection of the appropriate embedding dimension for
the model. Turchin (1993) used the cross-validation to
select the optimal model. We instead use an information
criterion [Akaike’s information criterion (AIC); Akaike
(1973)] since, currently, AIC seems to be the method
most widely used in selecting models (Burnham and
Anderson 2002). AIC is defined by:

AIC ¼� 2 loge ðLÞ þ 2p;

where L is the maximum likelihood, and p is the number
of parameters including the intercept. For a regression
problem with normal errors, we can use the following
formula as an AIC criterion by omitting constant terms:

AIC ¼ n loge
RSS

n

� �
þ 2p;

where n is the number of data, and RSS is the residual
sum of squares. We compare the candidate models and
adopt the model that has the smallest AIC. It should be

noted that AIC does not select the true model directly.
Instead, AIC selects the model that has the largest
expected power of prediction evaluated by the measure
of Kullback–Leibler information. A model having the
largest predictive power will be close to the true model,
where a true model is defined as a model that appro-
priately summarizes the actual system by ignoring the
minor components of the system. Hence, we can utilize
AIC to roughly identify the true model in most cases.
Before performing the model selection using AIC, we
first carefully determine the candidate models. The
higher order terms in the Taylor series are included to
account for variance that is not explained by the lower
order terms. Hence, the higher order terms should be
included in the model only if the corresponding lower
order terms are included. Such a hierarchical family of
models is usually used as the candidates when we select
the appropriate model by polynomial regression or log-
linear model analysis. By the same principle, we confine
our model to the hierarchical family in the comparison
of AIC.

For C. suppressalis, the linear components of the first
and second lagged populations were selected by AIC.
Quadratic terms that indicate the nonlinearity were not
selected:

Dt ¼ 0:572Dt�1 � 0:246Dt�2 þ 0:125TWt þ et;
et � Nð0; 0:064Þ: ð9Þ

For N. cincticeps, only the winter temperature was
selected as the explanatory variable:

Dt ¼ 0:203TWt þ et; et � Nð0; 0:236Þ: ð10Þ
For L. striatellus, a slightly complicated equation was
selected by AIC:

Dt¼ 0:219þ0:129Dt�1�0:666D2
t�1�0:321Dt�2

�0:206TWtþ0:166TStþ et; et�Nð0;0:198Þ: ð11Þ

The quadratic term of the first-order lagged population
was selected, indicating the existence of nonlinearity.
Both the winter and summer temperatures were selected
in this species.

Vector autoregression analysis

Three insect pests living in the same paddy field may have
some inter-species interactions that modify the popula-
tion dynamics of each species, although we analyzed the
time-series of each species separately in the above anal-
yses. To now include the possibility of inter-species
interactions, we use VAR because it automatically ana-
lyzes the relation between populations of different times
between species as well as within species. We use an ap-
proach similar to the one used by Ives et al. (2003) in
analyzing the interaction between species in time-series
data on the limnological community. For simplicity,
when performing VAR, we adopt a linear approximation
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of the influence of lagged populations as well as other
exogenous factors. We use the subscripts C, N, and L, to
indicate the variable for C. suppressalis, N. cincticeps,
and L. striatellus, respectively. Then the vector autore-
gression model is expressed by:

DCt ¼ aC þ aCC1DCt�1 þ aCC2DCt�2 þ aCN1DNt�1

þ aCN2DNt�2 þ aCL1DLt�1 þ aCL2DLt�2

þ bCWTWt þ bCSTSt þ eCt; ð12Þ
DNt ¼ aN þ aNC1DCt�1 þ aNC2DCt�2 þ aNN1DNt�1

þ aNN2DNt�2 þ aNL1DLt�1 þ aNL2DLt�2

þ bNWTWt þ bNSTSt þ eNt; ð13Þ
DLt ¼ aL þ aLC1DCt�1 þ aLC2DCt�2 þ aLN1DNt�1

þ aLN2DNt�2 þ aLL1DLt�1 þ aLL2DLt�2

þ bLWTWt þ bLSTSt þ eLt: ð14Þ

In Eq. 12, the parameters aC, aCC1, aCC2, aCN1, aCN2,
aCL1, aCL2, bCW, and bCS are constants, eCt is a normal
error. The parameters in Eqs. 13 and 14 are defined in a
similar manner. We use Stata for the estimation (Stata
2003).

VAR indicates that the influence of the first-order
lagged terms was statistically significant within species
for C. suppressalis and L. striatellus (aCC1 and aLL1 in
Table 2 ). The results of these tests, however, indicate
trivial phenomena such as the population at time t tends
to be large if the population at time t�1 is large. The
first-order lagged terms of C. suppressalis and L. stria-
tellus have a marginally significant influence on
N. cincticeps (P=0.012 and 0.042, respectively). The
influence of temperature is significant for C. suppressalis
and L. striatellus. The population of C. suppressalis in-
creases with increasing winter temperatures (P=0.019).
The population of L. striatellus increases with increasing
summer temperatures (P=0.003), but decreases with
increasing winter temperatures (P=0.041).

The problem of measurement error

We define ‘‘measurement error’’ as the component that
influences the observation without influencing the
observation of the subsequent year. The influence of
measurement errors was ignored in the above analyses.
Although our definition of measurement error is differ-
ent from common usage, we adopt this term because we
can use the same approach, the state-space model that is
used for removing the measurement error in common
usage. State-space modelling has been used recently in
ecological literature when analyzing population
dynamics (Zeng et al. 1998; deValpine and Hastings
2002; Calder et al. 2003; Williams et al. 2003; Clark and
Bjørnstad. 2004; Viljugrein et al. 2005). We can use the
Kalman filter algorithm if we use a linear model and if
the errors obey a normal distribution (Harvey 1989;
Durbin and Koopman 2001; Brockwell and Davis 2002).
Numerical integration or simulation will be required if

we incorporate nonlinear terms into the equation
(Kitagawa 1987; Durbin and Koopman 2001; deValpine
and Hastings 2002). Hence, we consider the linear case
where the terms for Dt

2 are omitted for convenience. The
above response surface analyses imply that the linear
approximations will be reasonable for C. suppressalis
and N. cincticeps. When we assume a distribution other
than a normal distribution, such as a Poisson distribu-
tion in an arithmetic scale, the calculation also becomes
complicated (Durbin and Koopman 2001). Bayesian
estimation using the Markov chain Monte Carlo algo-
rithm is especially useful in such cases (Shephard and
Pitt 1997; Calder et al. 2003; Saitoh et al. 2003; Stenseth
et al. 2003; Clark and Bjørnstad. 2004); however, the
assumption of Poisson distribution becomes less likely if
the mean fluctuates spatially at random due to some
natural or artificial reasons. It seems preferable to use
some overdispersed Poisson distributions such as a
negative binomial distribution in an arithmetic scale.
Actually, the spatial distribution of most populations in
the field does not obey a Poisson distribution; the mean-
variance relation is instead described by Taylor’s power
law where the exponent is relatively closer to 2 than 1 as
expected by a Poisson distribution (Taylor et al. 1978,
1979; Yamamura 2000). The quasi-likelihood approach
is not appropriate because the dispersion parameter will
not be constant. The exponent close to 2 will be partly
generated by the multiplicative nature of population

Table 2 Estimated parameters in vector autoregression defined by
Eqs. 12, 13, and 14

Species Parameter Estimate SE P

C. suppressalis aC 0.009 0.036 0.794
aCC1 0.502 0.152 0.001
aCC2 �0.272 0.160 0.089
aCN1 0.115 0.090 0.202
aCN2 0.002 0.089 0.982
aCL1 �0.005 0.079 0.954
aCL2 �0.073 0.085 0.389
bCW 0.136 0.058 0.019
bCS �0.017 0.064 0.788

rC
2 0.071

N. cincticeps aN �0.012 0.061 0.848
aNC1 0.648 0.259 0.012
aNC2 �0.028 0.274 0.918
aNN1 �0.025 0.154 0.869
aNN2 �0.121 0.151 0.426
aNL1 0.274 0.135 0.042
aNL2 �0.129 0.146 0.378
bNW 0.180 0.099 0.067
bNS 0.108 0.109 0.324

rN
2 0.209

L. striatellus aL 0.030 0.064 0.641
aLC1 0.305 0.271 0.260
aLC2 �0.384 0.286 0.179
aLN1 �0.198 0.160 0.216
aLN2 0.283 0.158 0.073
aLL1 0.353 0.141 0.012
aLL2 �0.041 0.152 0.787
bLW �0.210 0.103 0.041
bLS 0.339 0.114 0.003

rL
2 0.227
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dynamics. In such situations, as discussed above, it is
reasonable to assume a normal distribution with a
constant variance for the error of Dt as an approxima-
tion. We use normal errors for this reason.

Let lCt, lNt, and lLt be the ‘‘true population’’ at year
t of C. suppressalis, N. cincticeps, and L. striatellus,
respectively. We use the term true population in the
sense that it influences the population of the following
year. Then, if we ignore the multicollinearity, the full
state-space model for C. suppressalis is expressed by a
form as follows:

lCt ¼ aCþaCC1lCt�1þaCC2lCt�2þaCN1lNt�1

þaCN2lNt�2þaCL1lLt�1 þaCL2lLt�2

þbClwswtþbClssstþ eClt; eClt�Nð0;r2
ClÞ; ð15Þ

DCt ¼ lCt þ aCNlNt þ aCLlLt þ bCDwswt

þ bCDssst þ eCDt; eCDt � Nð0; r2
CDÞ; ð16Þ

where eClt is a process error, and eCDt is a signal error.
Equations 15 and 16 are a state equation and an
observation equation (signal equation), respectively. The
notation of parameters is similar to that of Eq. 12. We
only show the equations for C. suppressalis for conve-
nience, but the corresponding equations are defined for
the other two species in a similar manner. The factor of
temperature is included in both the state equation and
observation equation, because it may influence either or
both the true population and the observation. The terms
for lNt and lLt are included in Eq. 16, because the ob-
served number of individuals may be influenced by the
true population of another species of the same year. We
use EViews for the estimation by Kalman filer (Quan-
titative Micro Software 2004). The optimal equation
that is suitable for prediction is selected by minimizing
AIC. Non-zero covariance is allowed among eClt, eNlt,
and eLlt, and among eCDt, eNDt, and eLDt. However, in
this application, no covariance was selected by AIC.

For C. suppressalis, the following equation was se-
lected:

lCt ¼ 0:504lCt�1 � 0:276lCt�2 þ eClt;
eClt � Nð0; 0:059Þ; ð17Þ

DCt ¼ lCtþ0:087TWt: ð18Þ
That the term eCDt was not adopted by AIC indicates
that the random component of the measurement error is
relatively small. The observed number of individuals
increases with increasing winter temperature, while the
true population is not influenced by the temperature.

For the dynamics of N. cincticeps, we obtain:

lNt ¼ eNlt; eNlt � Nð0; 0:202Þ ð19Þ
DNt ¼ lNt þ 0:699lCtþ0:171TWt; ð20Þ
or

lNt ¼ 0; ð21Þ
DNt ¼ lNt þ 0:699lCtþ0:171TWt þ eNDt;

eNDt � Nð0; 0:202Þ: ð22Þ

These two models have the same log likelihood and AIC.
The true population at year t�1 does not influence the
population at year t. Hence, there is logically no dis-
crimination between the measurement error and error of
the true population. The influence of temperature is
similar to that in C. suppressalis; the winter temperature
influences the observed number of individuals but does
not influence the true population. The above equations
also indicate that the true population of C. suppressalis
positively influences the observed number of N. cincti-
ceps but does not influence the true population of
N. cincticeps.

For the dynamics of L. striatellus, we obtain:

lLt ¼ 0:430lLt�1 � 0:246lLt�2 þ eLlt;
eLlt � Nð0; 0:210Þ; ð23Þ

DLt ¼ lLt � 0:149TWt þ 0:273TSt: ð24Þ
The term eLDt was not adopted by AIC, indicating that
the random component of measurement error is rela-
tively small, while both winter temperature and summer
temperature were adopted in the observation equation.

Both combinations of (aCC1 and aCC2) for C. sup-
pressalis and (aLL1 and aLL2) for L. striatellus lie within
the stable region, yielding complex roots that cause
damping oscillations [see Fig. 2.2 in Harvey (1981), or
the equivalent Fig. 2.5 in Royama (1992)]. Such a
damping oscillation is observable also intuitively in the
lower panel of Fig. 1 for C. suppressalis. In contrast, the
population dynamics of N. cincticeps are non-cyclically
stable: the population simply fluctuates around its mean
density without any oscillation.

Abundance of insect pests under global warming

We next utilize the above equations to predict the yield
loss that will result from the increase in pest populations
under global warming. The outcomes of global warming
greatly depend upon the future behavior of human
beings. Hence, we should assume a clear scenario of
future human action before calculating the prediction.
SRES scenarios of IPCC are divided into four families,
A1, A2, B1, and B2, each of which contains qualitative
storylines (IPCC 2000). The A1 family describes a future
world of very rapid economic growth, a global popula-
tion that peaks in mid-century and declines thereafter,
and the rapid introduction of new and more efficient
technologies. The A2 family describes a very heteroge-
neous world. The underlying theme is self-reliance and
preservation of local identities. Fertility patterns across
regions converge very slowly, which results in a contin-
uously increasing global population unlike in the A1
family. The B1 family resembles the A1 family but the
conditions seen with the latter are accompanied by rapid
changes in economic structures toward the introduction
of clean and resource-efficient technologies. Their
emphasis is on ‘‘global solutions’’ to economic, social,
and environmental sustainability. The B2 family
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resembles the A2 family but describes a world in which
the emphasis is on ‘‘local solutions’’ for the sustain-
ability of economic, social, and environmental systems.

The Meteorological Research Institute (MRI) con-
structed GCM by adopting the A2 family scenario of
the SRES, that is, heterogeneous population growth
without sustainability. Their GCM called MRI-
CGCM2 has a horizontal resolution of 280 km with 30
atmospheric layers (Yukimoto et al. 2001; Yukimoto
and Noda 2002). The horizontal resolution is too
sparse for actual use. Then, MRI used a regional cli-
mate model (RCM) called RCM-20 km having a res-
olution of 20 km and nested it into MRI-CGCM2 over
2,500·2,500 km around Japan (Kurihara 2004). The
predicted climatic data for the 20-year average were
given for the present and for two future periods: 1981–
2000, 2031–2050, and 2081–2100. Data included
measured and predicted temperature, rainfall, wind
velocities, and atmospheric pressure. However, the
resolution of 20 km adopted by this RCM is different
from the standard mesh grids of Japan, which causes
problems when we use the predicted climatic data
along with existing mesh data. Then, Nishimori et al.
(2005) converted the predicted climatic data into stan-
dard second-order mesh data by using the same manner
as that of Yokozawa et al. (2003). First, the baseline
climatic data were calculated with the average from 1981
to 2000 at a resolution of 7.5¢ in longitude and 5¢ in
latitude (approximately 10·10 km) by re-sampling the
third-order mesh climatic data (approximately 1·1 km
resolution) calculated from automated meteorological
data acquisition system (AMeDAS) data, where
AMeDAS was constructed by the Meteorological
Agency of Japan. For predicting the average climatic
data from 2031 to 2050, the climatic difference between
the prediction for 1981–2000 and 2031–2050 was calcu-
lated for each grid point of RCM. For each second-order
mesh, the four grid points of RCM that were nearest the
center of the second-order mesh were selected. The
climatic differences at these four points were averaged by
using a weight that is inversely proportional to the
distance. The average climatic data from 2031 to 2050
were then calculated by adding the average difference to
the baseline climatic data. The average climatic data
from 2081 to 2100 were calculated by a similar manner.
The predicted change in the temperature is listed in
Table 3. We use only the prediction for 2031–2050 in this
article as an illustration.

We predict the average annual trap catches of
C. suppressalis, N. cincticeps, and L. striatellus from
2031 to 2050 by using Eqs. 18, 20, and 24, respectively.
We ignore the unknown parameters, lCt, lNt, and lLt

that appear in these equations. Hence, we only predict
the abundance relative to that expected in a normal year.
The temperature rise may also influence the efficiency of
traps. For the dynamics of C. suppressalis and
N. cincticeps, however, summer temperature, that is, the
temperature during the period of light-trap catches, is
not included in Eqs. 18 and 20, indicating that the

influence of temperature on the trap efficiency is small.
Thus, we can consider that Eqs. 18 and 20 indicate the
dynamics of the number of individuals that actually
exist. Figure 6 shows that the population of C. sup-
pressalis will increase by a ratio of from 1.6 to 1.8 in
most areas in Japan. Figure 7 shows that the population
of N. cincticeps will increase by a ratio of from 3 to 4. It
is more complicated to determine the increase ratio in
L. striatellus since it is influenced by both winter and
summer temperatures according to Eq. 24. The ratio is
larger for the seaboard of the Sea of Japan (Fig. 8).

We should note that the extrapolation that was used
in calculating the abundance relies upon the assumption
that the future climate change will not modify the
structure of the system. Davis et al. (1995, 1998a, 1998b)
reported examples which show that the temperature rise
may modify the essential interaction between species.
Thus, we should carefully interpret the results given in
Figs. 6, 7, and 8.

Prediction of yield loss caused by C. suppressalis

C. suppressalis injures the plant directly while the other
two species, N. cincticeps and L. striatellus, cause yield
loss by transmitting viral diseases. The occurrence of
these diseases is determined by a complex interaction
among three biological entities: the rice plant, the virus,
and the insect. The sensitivity of rice plants to RSV
infection is restricted to the young stages (Shinkai 1962).
Hence, the synchronization between the emergence of
adult L. striatellus and the developmental stage of rice
plants susceptible to the virus is one of the major causes
for the disease’s prevalence. Yamamura and Yokozawa
(2002) predicted the influence of global warming on the
prevalence of RSV by calculating the degree of syn-
chronization between the emergence of adult L. stria-
tellus and the date of transplantation. In contrast, the
yield loss caused by C. suppressalis is straightforward.
Hence, we focus on C. suppressalis in predicting the yield
loss in this article.

We first examine the relation between the proportion
of injured stems in a plant and the number of larvae in the
plant. Kono and Ishikawa (1955) performed experiments

Table 3 Future mean temperaturea in Japanb under global warm-
ing predicted by the Meteorological Research Institute’s global
climate model (MRI-CGCM2)

Period Mean winter
temperature (�C)c

Mean summer
temperature (�C)d

Mean annual
temperature (�C)

1981–2000 3.55 17.92 10.73
2031–2050 5.97 19.71 12.84
2081–2100 6.66 20.30 13.48

aCurrent temperature calculated from automated meteorological
data acquisition system is also shown for comparison
bData for Nansei-Shoto are not used
cWinter temperature is the average from November to April
dSummer temperature is the average from May to October
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where 300 or 1,000 eggs were placed regularly in an
experimental wire mesh cage that contained 10·6 rice
plants (1.82·1.82 m). They reported the proportion of
injured stems and the total number of larvae in 60 plants.
We use these data to express the relation between the
number of larvae in a plant,which is denotedbym, and the
proportion of injured stems in the plant, which is denoted
by q, as an approximation. This is a rough approximation
as the larvae are not distributed completely uniformly
over the 60 plants. The number of larvae in a plant is
treated as continuous variable although it is actually a

discrete variable. Then, we obtained the following esti-
mate of the linear relation:

loge½� logeð1� qÞ� ¼ �2:36þ 2:14 log10ðmÞ; ð25Þ
where the parameters were estimated by linear regression
(upper panel in Fig. 9). The SE of the slope is 0.08. This
kind of linear relation, which is called the Kono–Sugino
relation (1958), has been used frequently to estimate
population density from binomial sampling (Gerrard
and Chiang 1970; Nachman 1984; Kuno 1986; Ekbom
1987; Nyrop et al. 1989; Binns and Bostanian 1990;
Schaalje et al. 1991; Feng and Nowierski 1992; Roux et
al. 1992; Feng et al. 1993). The transformation in the left-
hand side of Eq. 25 is called complementary log-log
transformation in statistical literature related to gener-
alized linear models or proportional hazard models.

Several authors have examined the relation between
the proportion of stems injured by larvae of C. suppres-
salis and the yield loss (Kono and Ishikawa 1955;
Okamoto and Sasaki 1957; Takagi et al. 1958; Nitta and
Naruse 1985). We use the data of Takagi et al. (1958) in
estimating this relation because their report seems the
most reliable. Because one cannot directly compare the
yields of various fields as yield varies considerably
depending upon the variety, the cultivation conditions,
and the fertility of the soil, they adopted the following
standardization. They first classified the sample plants
into strata by varieties and farmers. For each stratum,
sample plants were classified into ten classes by the per-
centage of the injured stems at 10% intervals. The
average yield per plant in each class was examined in
each stratum. Then the yield index for each class was
calculated by the following formula: 100·(average yield
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Fig. 6 Estimated increase in the abundance of C. suppressalis under
global warming. R Predicted annual number of individuals caught
by a light-trap in the period from 2031 to 2050 divided by that
number caught in the period from 1981 to 2000
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Fig. 7 Estimated increase in the abundance of N. cincticeps under
global warming. R Predicted annual number of individuals caught
by a light-trap in the period from 2031 to 2050 divided by that
number caught in the period from 1981 to 2000
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Fig. 8 Estimated increase in the abundance of L. striatellus under
global warming. R Predicted annual number of individuals caught
by a light-trap in the period from 2031 to 2050 divided by that
number caught in the period from 1981 to 2000
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in a class)/(average yield in the lowest class where the
percentage of injured stems is <10%). The yield index
was then averaged over strata for each class of injured
stems. We define the proportion of yield loss in a plant,
denoted by w, as 1�(yield index)/100. Then, we found the
following linear relation (see lower panel in Fig. 9):

log10ðwÞ ¼ �0:75þ 0:448 loge½� logeð1� qÞ�; ð26Þ
where the parameters were estimated by the linear
regression. The SE of the slope is 0.027. We obtain the
following relation by substituting Eq. 25 into Eq. 26:

w ¼ 0:0155m0:957: ð27Þ

Knowledge about the spatial distribution of larvae
per plant is required to calculate the average proportion
of yield loss in a field. As previously stated, we are
treating the number of discrete individuals as a contin-
uous variable for convenience. Hence, for the simplest
approximation, we use an exponential distribution,
which is a continuous distribution with only one
parameter. The probability that a plant contains m lar-
vae in a field where the average number of larvae per
plant is M is given by the probability density function
g(m),

gðmÞ ¼ 1

M
exp � m

M

� �
: ð28Þ

The average yield loss in a field, which is denoted by
�w; is given by integrating the multiplication of Eqs. 27
and 28.

�w ¼
Z 1

m¼0
0:0155m0:957gðmÞdm ¼ 0:0152M0:957: ð29Þ

The expected number of light-trap catches is determined
by the multiplication of the number of insects and the
probability that an insect is caught by the trap. The
second component that is determined by the trap
efficiency will be also influenced by the temperature. For
C. suppressalis, however, only the winter temperature
influences the light-trap catches of the summer season;
the temperature during the period of the light-trap cat-
ches does not influence the number of light-trap catches.
Hence, we can assume that the influence of temperature
on the trap efficiency is small. Then, let us assume that
the annual number of light-trap catches, which is given
by (smoothed component)·10Dt, is approximately pro-
portional to the number of larvae in the field (M). Then,
we have a relation:

�w ¼ c1 � 100:957Dt; ð30Þ
where c1 is a constant. By substituting Eq. 18 into Eq.
30, we obtain

�w ¼ c2 � 100:083TWt ; ð31Þ
where c2 is a constant, for a given lCt. We can calculate
the average yield loss relative to that expected in a
normal year by substituting the predicted temperature
into Eq. 31. Figure 10 indicates that the yield loss in the
period from 2031 to 2050 becomes larger than that in the
period from 1980 to 2000 by a factor of 1.6 or 1.8 in
most areas of Japan.

The actual distribution of C. suppressalis will be more
complicated than an exponential distribution. The larval
distribution is described by a negative binomial distri-
bution (Kono et al. 1952) as well as the distribution of
many other organisms. The parameter 1/k of the nega-
tive binomial distribution, usually used as the index of
aggregation, changes depending on the developmental
stage (Kanno 1962; Iwao 1968) and the density (Kono
et al. 1952). In applying Eq. 28, we are assuming that the
1/k lies around 1, as for the case reported by Kono et al.
(1952). Some biases might be thus suspected in several
situations.

Results and discussion

The analyses conducted by using the state-space model
indicated that the ‘‘observed population’’ is influenced
by the temperature (Eqs. 18, 20, 24), whereas the ‘‘true
population’’ is regulated in a species-specific manner,
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which is rather independent of temperature (Eqs. 17, 19,
23). These equations are typically expressed in the
following form:

lt ¼ hðlt�1Þ þ elt; ð32Þ
Dt ¼ lt þ kðTtÞ; ð33Þ
where h is a function of the vector of past density lt�1, k
is a function of the vector of environmental variable Tt.
The fluctuation in environmental factors does not
influence Eq. 32. Thus, it is indicated that the population
dynamics may be a result of multi-level regulation. The
deviation in population, which is caused by the fluctu-
ation in environmental factors, is regulated immediately.
The regulated populations are further regulated by the
function h(lt�1).

The two viewpoints in the classic debate about reg-
ulation may correspond to the extreme case of Eqs. 32
and 33. If the function k is close to zero, the system is
most appropriately described according to Nicholson
(1954); the population is regulated in a density-depen-
dent manner without suffering the explicit influence of
environment. In contrast, if the function h is close to
zero, the system is most appropriately described
according to Andrewartha and Birch (1954); the popu-
lation is determined by the environmental factor without
the influence of apparent density-dependent mechanisms
as they defined them. The difference in the viewpoints of
Nicholson (1954) and Andrewartha and Birch (1954)
may have arisen from the difference in the material they
studied. Nicholson (1954) used an experimental popu-
lation, e.g blowflies, where the function k may be near
zero; such a system may be called a ‘‘Nicholson type
system’’. Andrewartha and Birch (1954) used thrips in
fields where the function h may be near zero; this can be

called the ‘‘Andrewartha–Birch type system’’. The
dynamics of thrips will be expressed by a form similar to
that found for N. cincticeps (Eqs. 19, 20). The type of
system may partly depend on the size or generation time
of the organisms. For very small organisms such as
fungi, the system may be described as an Andrewartha–
Birch type system in most cases. For example, the
prevalence of the fungal rice blast disease in a year is
predicted from information on climatic conditions
without considering the disease prevalence in the previ-
ous year. BLASTAM, a system used to predict out-
breaks of rice blast disease, only uses weather data from
AMeDAS, including data on precipitation, temperature,
duration of sunshine, wind force and hourly wind
direction (Hayashi and Koshimizu 1988). The BLA-
STAM system has been used recently in several prefec-
tures in Japan, and its efficacy has been well recognized.
In contrast, population dynamics of large mammals
seem to be best described as a Nicholson type system.
For example, in describing the population dynamics of
sika deer, Matsuda et al. (1998, 2002) constructed
demographic models including exogenous hunting fac-
tors. Insect population may lie in the intermediate po-
sition in the continuum from fungi to large mammals;
accordingly, both Nicholson type and Andrewartha–
Birch type systems arise in the population dynamics of
insects, depending on the situation. Such a continuum
looks like a classic argument of Pianka (1978) concern-
ing r- and K-strategies. The continuum of r–K strategies
is rather ambiguous, but our continuum is clearly de-
fined by Eqs. 32 and 33. Smaller organisms will be
generally more sensitive to the environmental change,
because they have usually a larger surface–volume ratio.
A large surface–volume ratio may enable a large
intrinsic rate of increase under their optimal environ-
ment. Such a large intrinsic rate of increase will be
usually yielded through a shorter generation time rather
than a larger number of offspring per individual.

Global warming has seemingly similar influences on
the abundance of C. suppressalis and N. cincticeps
(Figs. 6, 7). An increase in winter temperature (defined
by the average temperature from the previous November
to April) enhances the abundance of both species.
However, the increment is much larger for N. cincticeps
than for C. suppressalis as indicated by the difference in
scale between Figs. 6 and 7. Such a difference may be
related to the difference in the number of generations per
year. N. cincticeps has twice the number of generations,
which may cause a sensitive response to the change in
temperature. The prediction for L. striatellus (Fig. 8) is
very different from that for C. suppressalis and
N. cincticeps. Equation 24 predicts that the higher win-
ter temperature has a negative influence on the abun-
dance of L. striatellus. However, the current prediction
for L. striatellus does not seem that reliable. The
dynamics of Dt shown in the lower panel in Fig. 3
appear somewhat strange for the 20-year period from
1970 to 1990. The Dt is extremely small for 6 years while
in the remaining 14 years, the Dt is always larger than 0.

R 4.1 <

4.1 R 6.1 <

6.1 R 8.1 <

8.1 R

yb ssol dleiY silasserppus .C

≤

≤

≤

Fig. 10 Estimated increase in the yield loss of rice caused by
C. suppressalis under global warming. R Predicted annual yield loss
in the period from 2031 to 2050 divided by that loss in the period
from 1981 to 2000
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It seems that the smoothing procedure using a normal
kernel could not successfully remove the influence of
nuisance factors for this species. The reliability of the
prediction would be enhanced if we could identify
the nuisance factor and remove the influence before
performing analysis.

No nonlinear component was selected by AIC in
the response surface analysis for C. suppressalis and
N. cincticeps (Eqs. 9, 10). A nonlinear component was
selected for L. striatellus (Eq. 11) but the results for this
species may not be reliable, as previously stated.
Although a nonlinear relation is widely observed in the
laboratory experiments of single species (e.g. Utida
1941), it seems to be rare in field populations except for
those in Arctic regions (Ellner and Turchin 1995). A
rarity of nonlinear relations in the field seems partly due
to the spatial heterogeneity of density. Let us consider a
situation where the density at time t is determined by the
density at time t�1 without error. Let kit be the local
density on an arithmetic scale at the ith spatial position.
Let g(kit) be the function expressing the local density-
dependent relation, that is kit=g(kit�1). Then, by using a
Taylor series, we can approximately express the spatial
mean density at time t by:

EðktÞ � gðEðkt�1ÞÞ þ
g0000ðEðkt�1ÞÞ

2
V ðkt�1Þ; ð34Þ

where the double prime (¢¢) indicates the second
derivative; E and V indicate the mean and variance,
respectively (Yamamura 1989, 1998). The right hand
side of Eq. 34 approaches a linear form with increasing
spatial heterogeneity V(kit�1) under several forms of g.
The systems tend to enter a stable region simulta-
neously. Such a linearization in an arithmetic scale is
closely related to the classic concept of the ‘‘spreading
of risks’’ that was first formulated by Den Boer (1968).
He wrote that ‘‘the chances of surviving and repro-
ducing must be different in these different places. This
means for the population as a whole that the effect of
extreme conditions in one place will be damped to
some degree by the effect of less extreme conditions in
others. In other words: the risk of wide fluctuation in
animal numbers is spread unequally over a number of
subpopulations living in different micro-environments.’’
Various simulations have been conducted to demon-
strate that the spreading of risks can contribute to
stabilization (Reddingius and Den Boer 1970; Reddin-
gius 1971; Den Boer and Reddingius 1996). However,
Eq. 34 concisely indicates the condition under which
stabilization occurs by spreading of risks; the stabil-
ization effect occurs if the function g is sufficiently
convex and if there is sufficient heterogeneity V(kit�1).
In this respect, the ‘‘linearization effect’’ and the
spreading of risks are almost the same thing. In an
ecosystem where the species richness of plants is high,
the spatial heterogeneity for herbivores or predators
inevitably becomes high. The population dynamics in
such systems are inevitably stabilized because of a lin-
earization effect, i.e. the spreading of risks. It seems of

critical importance to understand that the diversity–
stability paradigm that was posed by Elton (1958) can
be explained by such trivial logic without assuming any
special mechanism (Yamamura 2002).
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