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Microbiome variation correlates with the insecticide
susceptibility in different geographic strains of a significant
agricultural pest, Nilaparvata lugens
Yunhua Zhang 1,2,4, Tingwei Cai 1,2,4, Maojun Yuan 1,2, Zhao Li 1,2, Ruoheng Jin 1,2, Zhijie Ren 1,2, Yao Qin 1,2, Chang Yu 1,2,
Yongfeng Cai 1,2, Runhang Shu 3, Shun He 2, Jianhong Li 2, Adam C. N. Wong 3 and Hu Wan 1,2✉

Microbiome-mediated insecticide resistance is an emerging phenomenon found in insect pests. However, microbiome composition
can vary by host genotype and environmental factors, but how these variations may be associated with insecticide resistance
phenotype remains unclear. In this study, we compared different field and laboratory strains of the brown planthopper Nilaparvata
lugens in their microbiome composition, transcriptome, and insecticide resistance profiles to identify possible patterns of
correlation. Our analysis reveals that the abundances of core bacterial symbionts are significantly correlated with the expression of
several host detoxifying genes (especially NlCYP6ER1, a key gene previously shown involved in insecticides resistance). The
expression levels of these detoxifying genes correlated with N. lugens insecticide susceptibility. Furthermore, we have identified
several environmental abiotic factors, including temperature, precipitation, latitude, and longitude, as potential predictors of
symbiont abundances associated with expression of key detoxifying genes, and correlated with insecticide susceptibility levels of N.
lugens. These findings provide new insights into how microbiome-environment-host interactions may influence insecticide
susceptibility, which will be helpful in guiding targeted microbial-based strategies for insecticide resistance management in
the field.
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INTRODUCTION
Microbes and their community composition are shaped by a
myriad of environmental abiotic and biotic factors, including
geographic locations, environmental pH, temperature, precipita-
tion, nutrient availability, and host genotype1–5. Changes in the
microbiomes mediated by these abiotic factors can significantly
affect animal phenotypes6,7. As the largest group in the animal
kingdom, insects and their associated microbes are constantly
responding to environmental variation and fluctuation8,9. Growing
evidence has demonstrated that many insect phenotypes are the
product of microbiome-environment interactions, including insec-
ticide resistance. An example is temperature-dependent changes
in microbiome composition that feedback on host insecticide
resistance10–12.
The brown planthopper, Nilaparvata lugens is a significant rice

pest in Asia. This pest also has serious resistance problems to
multiple insecticides. Having migrated from Southeast Asia to
China and other countries every year, this insect is exposed to
different insecticides, resulting in geographical differences in
resistance profiles13,14. Insecticide resistance of N. lugens is
dependent on the expression of cytochrome P450 (P450) genes,
which include NlCYP6ER1, a key P450 gene that can mediate
resistance to multiple insecticides including imidacloprid, niten-
pyram, dinotefuran, thiamethoxam, clothianidin and sulfoxa-
flor15–17. Other genes, including NlCYP6AY1, NlCYP4CE1, and
NlCYP6CW1, also play an important role in imidacloprid resis-
tance18. Recently, bacterial symbionts have been shown to affect
N. lugens insecticide resistance by regulating host detoxifying
gene expression19,20. These findings suggest that insecticide

susceptibility variation of N. lugens could be determined by the
level of detoxifying gene expression regulated by the microbiome.
Although the impact of insecticide exposure as an environ-

mental driver of resistance evolution has been extensively studied,
other environmental factors remain underexplored21–24. Current
literature supports that the environment plays a prominent role in
driving microbiome diversification, while the microbiome has
been shown to affect insecticide resistance in several agricultural
pests. The critical questions we ask in this study are: (1) Do host
genetics or microbiome variations correlate with insect differential
responses to insecticides? (2) Could specific environmental abiotic
factors predict microbiome variation patterns? To this end, we
explore the correlation between host genetics background,
microbiome composition, gene expression, and insecticide
resistance profiles of nine N. lugens field strains (FS) collected
from different geographical locations and identify significant
environmental abiotic factors that may predict these differences.
Our results reveal insecticide susceptibility phenotypes are

poorly dependent on host genetics background but associated
with multiple bacteria and corresponding detoxifying gene
expressions of N. lugens. We further demonstrate that several
environmental abiotic factors correlated with the variation in
abundance of these key microbes. These findings provide new
insights that insect host-microbiome interactions may explain the
geographical differences in insecticide susceptibility among N.
lugens strains and lay the foundation for developing targeted
microbial-based strategies to manage insecticide resistance.
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RESULTS
Differences in insecticide susceptibility among the N. lugens
FS
To investigate the pattern of insecticide susceptibility among field
N. lugens, the susceptibilities of nine FS collected from different
geographic locations to 11 insecticides were measured. Two
laboratory strains were also included (Fig. 1). The LC50 results
indicate that the insecticide susceptibility of N. lugens varies by
strain (Fig. 2a, Supplementary Table 4–14). Specifically, suscept-
ibility to clothianidin had the highest inter-strain variability,
whereas triflumezopyrim had the lowest. The susceptibility to
neonicotinoid insecticides (imidacloprid, thiamethoxam, niten-
pyram, dinotefuran, and clothianidin), buprofezin, and isoprocarb
have greater variations as compared to the other 4 insecticides
(Fig. 2a, Supplementary Table 4–14). The susceptibility profiles of
lab strains (LS) were significantly separated from FS in PCoA1, and
the results also showed that eight out of nine FS are similar but

not the HNCS (PERMANOVA r= 0.557 P= 0.021, Fig. 2b).
Spearman-based correlation was used to verify cross-resistance
between the different insecticides, through which we found there
were positive associations between insecticides acting on the
nicotinic acetylcholine receptors (Fig. 2c). Imidacloprid showed a
serious cross-resistance problem with four other insecticides
(thiamethoxam, dinotefuran, sulfoxaflor, and triflumezopyrim),
which implies similar mechanisms underlying insecticide resis-
tance among the FS for these insecticides.

Insecticide susceptibility differences correspond to
detoxifying gene expression in N. lugens
To explore the mechanisms underlying the differences in
insecticide susceptibility among the N. lugens strains, we analyzed
the transcriptomes of all the FS and LS (Supplementary Table 15
and Supplementary Data 1), as insecticide susceptibility variation
is usually dependent on detoxifying gene expression level25. There
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Fig. 1 Collection localities and susceptibility level for Nilaparvata lugens. The map was downloaded from Google Earth, the area where
field strains of N. lugens were collected is labeled with white boxes, and the scale bars for small maps were for 200m. Detailed information on
field and laboratory strains of N. lugens were shown in Supplementary Table 1. The bar plot shows the susceptibility level [Log10 (LC50 value)]
of field and laboratory strains of N. lugens to 11 insecticides.
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Fig. 2 The difference in insecticide susceptibility among 11 strains of Nilaparvata lugens. a Variation of susceptibility among different
insecticides in different strains of N. lugens. b PCoA based on Bray–Curtis distance of the susceptibilities of laboratory and field strains to
insecticides. The color of points indicates the different sources of N. lugens. c Spearman correlation between LC50 of different insecticides
among 11 strains, correlations are based on linear Spearman correlation coefficients. The fill color of the ellipses indicates the strength of the
correlation (r) and whether it is negative (red) or positive (blue). A higher absolute value will show a narrower area of ellipses down to a line
(r= 1). Only significant correlations with P < 0.05 are shown. If the correlation is not significant, the box was left white.
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are significant differences among the transcriptomes of the
11 strains (PERMANOVA, r= 0.445, P= 0.006, Supplementary
Figure 1) but not between the FS and LS (PERMANOVA,
r= 0.037, P= 0.266, Supplementary Figure 1). Intriguingly, dense
networks were obtained when we analyzed the correlation
between N. lugens transcript abundances and susceptibilities to
individual insecticides (Fig. 3a), demonstrating the intimate
connections between host insecticide susceptibility and gene
expression. Genes related to insecticide susceptibility of N. lugens
were shared frequently (926, 35.67%), especially among insecti-
cides in the same target group (Fig. 3a and Supplementary Data
2). A majority of the genes correlated with the LC50 of imidacloprid
(666), dominated by negative correlations (468, 70.27%). Insecti-
cides that target the acetylcholine receptor have a greater number
of associated genes than chitin synthesis inhibitors (buprofezin) or
etofenprox that targets neuron sodium channels (Fig. 3a and
Supplementary Data 2). We performed correlation analysis on
gene families of three major detoxifying enzymes, the P450
monooxygenase, glutathione S-transferase (GST), and esterase
(EST), which are known to affect insecticide susceptibilities. There
are 41 detoxifying genes (18 of P450, 3 of GST, and 20 of EST) in
total that are correlated with at least one insecticide (Fig. 3a, c).
Notably, the expression of CYP6ER1 (includes several variant

transcripts), a key P450 gene, is positively correlated with LC50 of 7
insecticides to N. lugens including, imidacloprid, nitenpyram,
dinotefuran, clothianidin, triflumezopyrim, buprofezin, and iso-
procarb) (Fig. 3b, c and Supplementary Data 2). These results
indicate that differences in insecticide susceptibility among the N.
lugens strains can be explained by the differential expression of
key detoxifying genes.

Microbiome variations correlate with detoxifying gene
expression
The microbiome can modulate insecticide resistance by influen-
cing the host’s detoxifying gene expression, as shown in various
insect pests, including N. lugens11,20,26. This leads us to hypothe-
size that the different insecticide susceptibility and detoxifying
gene expression profiles among the N. lugens strains may be
attributed to microbiome differences. A total of 372 bacterial and
1732 fungal taxa were identified across the 11 N. lugens strains by
16S rRNA and ITS amplicons sequencing, respectively (Supple-
mentary Table 16, Supplementary Data 3 and 4). The dominant
bacteria include Wolbachia, Arsenophonus, Acinetobacter_rhizo-
sphaerae, and Staphylococcus_sciuri, which comprised over 80% of
the reads, and the genus Hirsutella dominated the fungal
communities (Supplementary Fig. 2a, b). Inter-strain variation of
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Fig. 3 Correlation networks of LC50 values and genes expression levels. a Interaction network of LC50 values and whole transcriptome
genes expression levels, the circles are reflected insecticide susceptibility, and their size reflected the number of lines connected to them
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bacterial and fungi communities based on Bray-Curtis dissimilarity
is highly significant [(Supplementary Fig. 2c, d) PERMANOVA,
r= 0.423, P= 0.001 for bacteria; PERMANOVA, r= 0.475, P= 0.001
for fungi], and also between FS and LS [(Supplementary Fig. 2c, d)
PERMANOVA, r= 0.055, P= 0.015 for bacteria; PERMANOVA,
r= 0.12, P= 0.001 for fungi)]. Subsequently, we analyzed the
correlation between gene transcript and microbial taxon abun-
dances, focusing on taxa with relative abundance greater than
0.05% and existing in more than 60% of the samples, i.e., 11 fungal
and 33 bacterial genera, which we defined as “core” (Supplemen-
tary Table 17). In the analysis including all strains, we examined
the correlation between the expression of detoxifying genes and
the microbial taxa, in which 7 of the P450, 2 of the GST, and 3 of
the EST genes correlated with specific bacterial taxon abundances,
while no gene correlated with specific fungal taxon abundances
(Fig. 4a and Supplementary Data 5). Among these detoxifying
genes, five NlCYP6ER1s (Nlug21310, Nlug25418, Nlug25673,
Nlug25674, and Nlug27339) have been previously shown to be
involved in N. lugens insecticide resistance (Supplementary Table
18); their expressions significantly correlated with the abundances
of six bacteria (Fig. 4a). Notably, the expression of NlCYP6AX1
shows a strong negative correlation with the abundance of genus
Arsenophonus, a symbiont involved in host insecticide resistance
(Fig. 4b)20. These results suggest that the abundances of certain
bacteria are potential markers for insecticide susceptibility of N.
lugens FS. The significant detoxifying gene-microbiome correla-
tions also imply these genes are important nodes connecting
variations of the microbiome and host responses to insecticides.

Variations in microbiome diversity and composition among
the N. lugens FS are significantly associated with specific
environmental abiotic factors
So far, our data show that the different field N. lugens strains
varied in insecticide susceptibility, gene expression, and micro-
biome profiles, and we have identified specific correlation
patterns. To further investigate how host genetics and environ-
mental abiotic factors may contribute to these correlation
patterns, we ran additional correlation analyses with respect to
the core microbiome. Core microbiome diversity based on
Bray–Curtis dissimilarity matrices were weakly correlated to host
genetic background (P= 0.051 and 0.053 for bacteria and fungi,
respectively; Supplementary Fig. 3 and Supplementary Table 19).
To disentangle the association between environmental

parameters and microbiome diversity of N. lugens, we explored
the correlation between microbiome α-diversity indexes and
various climate and location parameters of the N. lugens FS (Fig.
5a). The results showed that observed ASVs of fungi, but not
bacteria, were significantly correlated with temperature
(P= 0.037) and longitude (P= 0.0052) (Fig. 5a). We subsequently
estimated the distance decay of symbionts community similarity.
Significant distance–decay relationships were also observed in
fungi (slope=−0.034, P < 0.0001) but not in bacteria (slope= -
0.0061, P= 0.1215), which suggests the fungal community
similarity decreased with increasing geographic distance (Fig.
5b). Importantly, among the core microbiome taxa, the abundance
of 3 fungi and 4 bacterial genera are significantly correlated with
precipitation, temperature and/or latitude (Fig. 5c). Among these
microbiome taxa, two bacterial symbionts (g__Hydrocarboniphaga
and f__Comamonadaceae) (Fig. 5c) were significantly correlated
with detoxifying genes expression (Fig. 4b), which have been
shown to affect N. lugens insecticide susceptibility. Together, our
results suggest environment may have a stronger effect than the
host genotype on N. lugens microbiome composition. These
abiotic factors may ultimately lead to differences in insecticide
susceptibility among N. lugens FS by effects on the microbiome
and detoxification metabolism (Fig. 6).

DISCUSSION
The present study investigates the underlying drivers and
mechanisms of the inter-strain variability of N. lugens insecticide
susceptibility in FS. Our results suggest that environmental abiotic
factors may be better predictors than host genotypes for
microbiome variation. We also revealed host gene-microbiome
interaction networks and identified gene markers for insect
response to each of the nine insecticides tested, based on
correlations. These findings signify that insecticide resistance
phenotype among the field N. lugens strains are the product of
interactions between the environment, microbiome, and host
detoxification metabolism (Fig. 6).
Differences in insecticide susceptibility among field strains

observed in our study agreed with previous reports13,14. The
higher basal expression of detoxifying genes could be a
consequence of chronic insecticide exposure27. Therefore, it is
plausible that the expression patterns of detoxifying genes reflect
insecticide usage in different locations, and some of these genes
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may be used as diagnostic markers for pest resistance prediction,
and guide resistance governance strategies28. In our previous
study, the N. lugens symbionts have causal effects on host
detoxification metabolism and insecticide resistance11. The
correlation we identified from field N. lugen strains, when taken
together with the accumulated knowledge from our previous
studies, favors our conclusion that microbiome variations are likely
contributing factors to insecticide susceptibility rather than
consequences of insecticide exposure.
Our study suggests that the host transcriptome correlates with

the microbiome. Microbiome diversification among the strains
could be the by-product of varied insecticide exposure, it can also
be shaped by other abiotic factors, including temperature and
humidity29,30. One example is elevated temperatures causing
declines in insect–microbe symbiosis and symbiont-dependent
insecticide resistance11. Based on our findings that the abun-
dances of certain microbiome taxa significantly correlated with
climate and geographical factors, more research shall pay
attention to how changing environment (e.g., climate change)
may impact microbiome diversity that could ultimately impact
insecticide resistance phenotype of insect pests31,32.

N. lugens harbors two strains (S-type and N-type) of Arsenopho-
nus. Replacing S–type with N-type was previously shown to
decrease insecticide resistance due to the downregulation of the
P450 genes CYP6AY1 and UGT20. In this study, we also revealed a
positive correlation between Arsenophonus abundance and the
expression of the key P450 gene, NlCYP6AX1. The expression levels
of this gene may correlate with resistance to nitenpyram in N.
lugens, suggesting Arsenophonus could serve as a potential target
to combat N. lugens insecticide resistance25.
In our recent laboratory study, we observed that Wolbachia was

a key player in N. lugens insecticide resistance11. However, we do
not observe any correlation between Wolbachia and detoxifying
gene expression in field N. lugens strains. This may be because the
influence of Wolbachia on host insecticide resistance is unique to
specific Wolbachia strains, or particular host genotype
background33–35.
Our work also points to an “insecticide-resistant microbiome”

concept. If resistance can be predicted by the presence or
abundance of particular taxa, microbiome variation may be
regarded as a characteristic contributing to differences in
insecticide susceptibility among the N. lugens FS. This character-
istic may be disseminated in the field as the microbiome is
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transmissible36,37. In fact, some key symbionts, such as Arseno-
phonus, have been confirmed to spread horizontally among field
populations38. Thus, the dissemination of insecticide resistance
may result from microbiome transmission. This may explain why
some insecticides have been banned for years, yet resistance
levels remain high in the insects (such as N. lugens to
imidacloprid)25.
In conclusion, our results reveal that microbiome variation in

different geographic strains correlates with the insecticide
susceptibility of N. lugens. However, these correlations alone do
not deduce any causal relationship, more experiments will be
needed to establish causality. In addition to the microbiome,
variations of genetic background among these strains may
contribute to insecticide susceptibility differences but the effects
of genetic background were not further evaluated in this study. It
is also important to note that our analyses were based on N.
lugens samples collected in one year. We expect there would be
variations across years that justify our future work to sample
multiple years. Nevertheless, our findings provide new insights
into the heterogeneity of insecticide resistance in field insect
populations in the context of potential microbiome-host-
environment relationships.

METHODS
Insect strains
N. lugens FS were collected from rice paddy fields from nine
locations in six provinces in China in 2019 (Fig. 1 and
Supplementary Table 1). Laboratory strain 1 (LS1) was collected
from a single rice field at Huazhong Agricultural University in
Wuhan, China, in 2008 (Supplementary Table 1). The laboratory
strain 2 (LS2) was obtained from Zhejiang Chemical Industrial
Group Co. Ltd (Hangzhou, Zhejiang, China). It was originally
collected in 1995 from a rice paddy field near Hangzhou, Zhejiang,
China. (Supplementary Table 1). The two laboratory strains have
been reared on rice seedlings in the laboratory without exposure
to any insecticide for more than 10 years39,40. All the N. lugens
strains were reared under a 16 h/8 h light/dark photoperiod at
27 ± 1 °C and 70%–80% relative humidity on Taichung Native 1
(TN1) rice seedlings41.

Insecticide bioassay
Information on the insecticides used in this study is shown in
Supplementary Table 214. For insecticide bioassay, the rice‐
seeding dip method was performed: insecticides (imidacloprid,
nitenpyram, dinotefuran, thiamethoxam, clothianidin, sulfoxaflor,
isoprocarb, chlorpyrifos, buprofezin, and etofenprox) or commer-
cial formulation (triflumezopyrim) were dissolved in N, N‐dimethyl
formamide (DMF) or water, respectively. The solutions were then
serially diluted with 0.1% Triton X‐100 in water or water only.
Fifteen rice seedlings were soaked in different concentrations of
insecticide solutions for 30 s, then wrapped with water-
impregnated cotton and transferred to plastic cups. Three
replicate cups were set up for each concentration and each cup
was added 15 third-instar N. lugens (F1 or F2 generation of fields
strains). Mortality was recorded after exposure to imidacloprid,
nitenpyram, thiamethoxam, clothianidin, dinotefuran, and sulfox-
aflor for 96 h, etofenprox, isoprocarb, chlorpyrifos for 72 h, and
triflumezopyrim and buprofezin for 120 h. The nymphs were
considered dead if they were unable to move after a gentle
prodding with a fine brush14.

Sample collection for sequencing
For each of the 11 strains of N. lugens (nine field and two
laboratory strains), thirty surface-disinfected third–instar nymphs
were pooled to provide 3–5 biological replicates for each strain.
The collected N. lugens FS have been propagated in the laboratory
for 1 or 2 generations to generate a sufficient number of insects
for the insecticide susceptibility assays, transcriptome sequencing,
and microbiome profiling by 16 S sequencing (requiring more
than 4000 individuals per strain). To ensure consistency between
sequencing results and phenotypic (insecticide susceptibility)
data, we subjected insects from the same generation (F1 or F2)
to the insecticides susceptibility assay and sequencing.

Transcriptome sequencing
Three micrograms of total RNA were used as input materials for
RNA sample preparations. Sequencing libraries were generated
using the TruSeq RNA Sample Preparation Kit (Illumina, San Diego,
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CA, USA). Sequencing was conducted on a Hiseq platform
(Illumina) by Shanghai Personal Biotechnology Cp. Ltd.
Clean reads were obtained by removing raw reads with

adapters, poly-N, and having a low quality (< Q20). Gene
expression levels were estimated by the RSEM software package
(http://deweylab.biostat.wisc.edu/rsem). Transcripts were anno-
tated based on the reference genome (SAMN13382557), and
sequences were annotated to the KEGG ORTHOLOGY (KO)
database with the KEGG Automatic Annotation Server.

Microbiome analysis
Total RNA instead of genomic DNA was extracted using RNAiso Plus
(TAKARA, DaLian, China), due to sequencing of total genomic DNA
extraction cannot distinguish between live (transcriptionally active)
and quiescent or dead microbial (transcriptionally inactive)6. cDNA
was synthesized with RNA (1 μg) using Hifair™ 1st Strand cDNA
Synthesis SuperMix for qPCR (YEASEN, Shanghai, China). Subse-
quently, PCR amplification of the bacterial 16 S rRNA genes and the
fungal ITS1 region was performed using the primers 338 F (5′-
ACTCCTACGGGAGGCAGCAG -3′)-806R (5′-GGACTACHVGGGTWTC-
TAAT-3′) and gITS7 (5′-GTGARTCATCGARTCTTTG-3′)-ITS4 (5′-
TCCTCCGCTTATTGATATGC-3′)42, respectively. Sample–specific 7-bp
barcodes were incorporated into the primers for multiplex sequen-
cing. The PCR products were purified using Vazyme VAHTSTM DNA
Clean Beads (Vazyme, Nanjing, China) and quantified using the
QuantiT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA).
Paired-end 2 × 250 bp sequencing was performed using the Illumina
NovaSeq platform with NovaSeq 6000 SP Reagent Kit at Shanghai
Personal Biotechnology Co., Ltd (Shanghai, China). Bioinformatic
analyses were performed using QIIME2 2020.1143, according to the
official tutorials (https://docs.qiime2.org/2020.11/tutorials/) with slight
modifications. Briefly, raw sequence data were demultiplexed using
the demux plugin followed by primers cutting with cutadapt
plugin44. Sequence data were processed with the DADA2 plugin to
quality filter, denoised, merged, and chimera removed45. Non-
singleton amplicon sequence variants (ASVs) were aligned with
mafft46, and Alpha diversity and beta diversity were analyzed by the
diversity plugin with the samples rarefied. Taxonomy was assigned to
ASVs using the classify-sklearn naïve Bayes taxonomy classifier in
feature-classifier plugin43, against the SILVA 138 and Warcup
Database for bacteria and fungi, respectively47.

Genetic background analysis
Total genomic DNA was extracted from 20 third-instar individual
nymphs using the FastDNA SPIN Kit for soil (MP, Biomedicals,
California, USA) following the manufacturer’s protocol. Genetic
differences were estimated by Inter-simple Sequence Repeat
(ISSR) and the primer sequences were shown in Supplementary
Table 3. A binary matrix was built according to the presence or
absence of amplified bands with the different primers to calculate
the dissimilarity metrics based on Nei Unbiased Genetic Distance
by POPGENE (Version 1.31)48.

Statistical analysis
Bioassay data were analyzed using Polo Plus software (version 2.0).
The daily average temperatures and precipitation from July to
September were obtained from the China Meteorological Admin-
istration website (http://data.cma.cn). All distance matrices and
principal coordinate analysis (PCoA) based on Bray–Curtis dissim-
ilarity metrics were calculated by the VEGAN package (version
2.5–7). To determine significant differences in β-diversity among
different field strains, PERMANOVA was carried out using the
“adonis” function of the VEGAN package49. Spearman correlation
between genes transcripts, LC50 of each insecticide (All data were
used in correlation analysis between insecticide susceptibility-
transcriptome-microbiome, only field strains data were used in

environmental abiotic factors correlation analysis because we do not
have information on their origins or environment histories) and
microbial abundance (bacteria and fungi) was calculated using
corAndPvalue50 in WGCNA package (version 1.69) and P was
corrected by Benjamini and Hochberg FDR (BH) method, set
threshold as P(adj) < 0.05 in subsequent use to remove weak
interactions51. The network was made in Gephi (version 0.9.2) based
on the spearman correlation metrics. All packages were performed
in R (version 4.0.2). Data plotting and statistical analyses were
performed using GraphPad Prism (version 7.0) and R. Statistical
significance is being considered as P < 0.05 (*) and P < 0.01 (**). The
geographical distances among the sampling sites were calculated
from the sampling coordinates. Distance-decay relationships were
calculated as the linear regression relationships between geographic
distance and community similarity52. Mantel tests were used to
estimate the relative contributions of genetic background to
microbiome composition based on Bray–Curtis dissimilarity metrics
by the Pearson method with 999 permutations.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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