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Abstract

A major ongoing research effort seeks to understand the behavior, ecology and control of

the spotted lanternfly (SLF) (Lycorma delicatula), a highly invasive pest in the U.S. and

South Korea. These insects undergo four nymphal stages (instars) before reaching adult-

hood, and appear to shift host plant preferences, feeding, dispersal and survival patterns,

anti-predator behaviors, and response to traps and chemical controls with each stage. How-

ever, categorizing SLF life stage is challenging for the first three instars, which have the

same coloration and shape. Here we present a dataset of body mass and length for SLF

nymphs throughout two growing seasons and compare our results with previously-published

ranges of instar body lengths. An analysis using two clustering methods revealed that 1st-3rd

instar body mass and length fell into distinct clusters consistently between years, supporting

using these metrics to stage nymphs during a single growing season. The length ranges for

2nd-4th instars agreed between years in our study, but differed from those reported by earlier

studies for diverse locations, indicating that it is important to obtain these metrics relevant to

a study’s region for most accurate staging. We also used these data to explore the scaling

of SLF instar bodies during growth. SLF nymph body mass scaled with body length varied

between isometry (constant shape) and growing somewhat faster than predicted by isome-

try in the two years studied. Using previously published data, we also found that SLF nymph

adhesive footpad area varies in direct proportion to weight, suggesting that footpad adhe-

sion is independent of nymphal stage, while their tarsal claws display positive allometry and

hence disproportionately increasing grasp (mechanical adhesion). By contrast, mouthpart

dimensions are weakly correlated with body length, consistent with predictions that these

features should reflect preferred host plant characteristics rather than body size. We recom-

mend future studies use the body mass vs length growth curve as a fitness benchmark to

study how SLF instar development depends on factors such as hatch date, host plant, tem-

perature, and geographic location, to further understanding of life history patterns that help

prevent further spread of this invasive insect.
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Introduction

The spotted lanternfly (SLF), Lycorma delicatula White (Hemiptera: Fulgoridae) is a planthop-

per native to south Asia that has become a highly invasive pest in the U.S. and South Korea.

SLFs feed intensively on phloem from a wide variety of trees and other plants, stressing the

hosts as well as promoting the growth of sooty mold [1]. Because SLFs threaten significant eco-

nomic damage to agricultural crops, native trees, and landscape plants, a large ongoing

research effort seeks to understand their development, physiology, behavior and ecology to

inform methods for mitigation and control [2–4]. In this study, we discuss how clustering

methods can be applied to measurements of the body mass and size of immature SLFs

(nymphs) in order to improve the determination of SLF life stage and to study the scaling of

previously published SLF footpart and mouthpart dimensions [5] with body size. We begin by

explaining how these issues are relevant to a wide variety of topics in SLF research.

After emerging, SLFs develop through five life stages separated by molting: four nymphal

instars and the much larger and winged adult stage. The 4th instars are readily identified by

their distinctive red, black and white spotted coloration. However, the first through third

instars have similar black-and-white-spotted coloration and overall body morphology (Fig 1)

[6]. Many studies of SLF behavior, ecology, and phenology have relied on determination of the

nymphal stage (instar determination) in order to track how life stage influences ecology and

choice of host plants [1,2], dispersal patterns [3–5,7], locomotor behaviors such as climbing

and jumping [8,9], phenology and activity [10], spectral preferences [6], attraction to chemi-

cals [11], and effectiveness of various trapping methods [12]. Thus, instar determination meth-

ods for identifying the life stage of a given specimen collected in the field are useful and

important in many contexts. Several previous studies have shown how a detailed microscopic

examination can reveal foot, mouth part and antenna morphological changes during develop-

ment [8,13,14], providing information of great utility for how these factors influence feeding,

adhesion and locomotion throughout the insect’s life cycle. In practice, the life stages of the

first three SLF instars have been estimated in many studies using overall body dimensions

readily measured in the field, along with previously published size ranges for each instar.

In spite of this growing interest, only a few previous studies have reported measured data

for the ranges of body lengths corresponding to each nymphal life stage for use in instar

Fig 1. Photograph of 1st, 2nd, 3rd, and 4th instar spotted lanternfly nymphs. Double-headed arrow shows the

definition of body length, L. (scale bar = 10 mm).

https://doi.org/10.1371/journal.pone.0265707.g001
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determination, and none have reported body mass. (Table 1, Fig 1) The earliest study reported

only mean body lengths for each stage in China [15]. Park and colleagues [16] measured body

lengths for 1st through 4th instars in South Korea, although it was not stated whether speci-

mens used for measurements were raised in the laboratory with known life stage or collected

from the wild and the instar stage estimated from size. Jang et al. [6] reported only body

lengths for just 2nd instars captured in the field in South Korea. Dara et al. [17] reported the

ranges of body lengths measured for 1st through 4th instar nymphs collected in Pennsylvania.

None of these previous studies provided statistical data to guide the classification of new data-

sets for instar determination. Furthermore, studies have shown that the size ranges for each

instar can depend on factors such as date of emergence, diet, host plants, temperatures, and

environment (e.g., laboratory vs field-raised) [18]. Indeed, prior research has indicated that

SLF nymphs develop and survive differently when reared with different diets in the field

[19,20], at different temperatures [21], and artificial conditions (i.e., enclosures or laboratory

conditions) [1,16], but these studies did not consider how these factors affected instar

morphometrics.

For many insects and other arthropods, instar determination (i.e., identifying the life stage

of nymphs collected in the field) relies on the observation that major changes in body dimen-

sions occur primarily when the exoskeleton is shed upon molting [18]. Ideally, this involves

directly measuring the frequency distribution of one or more metrics of exoskeleton size for

each instar using laboratory-reared specimens with known molting status (e.g., based on

molted head capsule dimensions) [22]. However, instar determination should be possible

without knowledge of molting status if the number of developmental stages is known in

advance, the morphometric data are uniformly sampled across all life stages, and the frequency

distribution of these data is partitioned into distinct clusters [23]. The last approach is espe-

cially useful for SLFs, which have proven challenging to raise in the laboratory so that life stage

can be directly monitored [20,21], and which we have observed to have flaccid cast exoskele-

tons that do not provide useful sizing information after molting.

In this study, we report measurements of mass and body length for spotted lanternfly

nymphs along with clustering results for these specimens. By comparing these results with

those from four previous studies, we explore the variation in SLF nymph size distributions

reported thus far. A growth (ontogenetic) allometric analysis was also performed to identify

possible adaptations for feeding morphology and biomechanics. Body mass has been found to

scale as a power law of body length (i.e., M = Lc) for a wide range of insect and other arthropod

taxa with scaling exponents c that vary from < 1 to 3 [24], where c = 3 corresponds to isomet-

ric growth (geometrical similarity; maintaining a constant shape), c> 3 to positive allometry

Table 1. Body length (mm) of spotted lanternfly nymphs from this study and earlier work. N = number of specimens (not reported in [15]).

Body length (mm) Zhou, 1992 [15]

mean

4 7 10 13

Park et al., 2009 [16]

mean ± SE

3.9 ± 0.2

N = 43

5.7 ± 0.7

N = 62

8.9 ± 0.4

N = 23

11.6 ± 2.3

N = 37

Jang et al., 2013 [6]

mean ± SD

Not measured 6.0 ± 0.5

N = 17

8.6 ± 0.5

N not given

11.3 ± 0.7

N not given

Dara et al., 2015 [17]

[range]

[3.6, 4.4]

N = 12

[5.1, 6.4]

N = 10

[6.9, 9.4] N = 12 [10.9, 14.8]

N = 10

This study 2021

mean ± SD

4.24 ± 0.24

N = 54

6.67 ± 0.48

N = 30

9.30 ± 0.72

N = 61

11.74 ± 0.75

N = 49

This study 2022

mean ± SD

4.32 ± 0.35

N = 49

6.73 ± 0.38

N = 88

9.50 ± 0.54

N = 49

12.28 ± 0.60

N = 40

Life stage 1st instar 2nd instar 3rd instar 4th instar

https://doi.org/10.1371/journal.pone.0265707.t001
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(i.e., growing faster than predicted by isometry) and c < 3 to negative allometric growth (i.e.,

growing more slowly than predicted by isometry). We used our data to determine the ontoge-

netic scaling regime of SLF nymph body mass, and use previously-published morphometric

data to determine how the dimensions of foot and mouth body parts scale with overall body

size. We interpret these results in relation to SLF behavior and ecology, and suggest ways these

methods can be applied in future work.

Methods

Insect collection and morphometrics

Healthy, intact SLF nymphs were collected in the field from Ailanthus altissima trees and wild

grape vines (Vitis spp.) in southeastern Pennsylvania (40˚00’30.2"N 75˚18’22.0"W) from May

through July, 2021 and 2022, corresponding to 1st instar emergence until it was difficult to

find 4th instars (note this was a different date in the two years). In both years, we measured all

specimens collected from the field site using an insect net to avoid sampling bias. Details on

the collection timeline and number of specimens collected, which corresponded to multiple

samples per instar (2–4 weeks/stage in 2021; 4–5 weeks/stage in 2022) are given in S1 Appen-

dix. A total of N = 194 (2021) and N = 226 (2022) specimens were collected across all nymphal

life stages (Table 1). Because SLF are identified as an invasive species in Pennsylvania, all speci-

mens were euthanized by freezing [25].

Specimens were gathered from the insect net using scoop-shaped forceps to avoid damage

and placed immediately in plastic containers that contained a damp paper towel (to maintain

humidity) and freshly-picked A. altissima leaves still on branches (as a food source). They

were then placed in air-tight plastic containers, frozen, and stored at a constant -15 deg C

within two hours of collection. Morphometric data were measured post-mortem after thawing

for 15 min at 23.0 ±1.2 deg C and relative humidity 56 ± 14% to preserve tissue hydration and

morphology (model DVTH DataView logger, Supco). Specimens were handled using feather-

weight entomology forceps and were not placed under any stress at any point during storage

or measurement to avoid distortion of their bodies. Body mass, M, was measured using an

analytical balance (Explorer, Ohaus, Parsippany, NJ US) to ± 0.4 mg accuracy. Body length, L,

was defined as distance between the anterior end of the head to the posterior end of the abdo-

men. We measured body length using ImageJ [26] to ± 0.05 mm from digital micrograph

images of specimens lying flat on their dorsal or ventral surfaces with a scale bar in the same

plane; using a digital caliper resulted in identical measurements within instrumental uncer-

tainty. Micrographs taken from a variety of perspectives indicated that the effect of specimen

orientation was� 4% of body length and hence less than or equal to measurement uncertainty.

We measured the body length of dead specimens because live nymphs stand with their bodies

tilted relative to the surface by 20 to 33 deg (measured from side view photographs taken of

N = 18 live 3rd and 4th SLF instars). When live specimens are viewed from above, this body tilt

foreshortens the apparent body length and other dimensions by a factor ranging from 0.84 to

0.94, necessitating the use of close-up images recorded at more than one angle. We did not

consider sexual dimorphism because an earlier study [6] found only a small (< 4%) difference

in median body lengths between sexes for 4th instar nymphs and reported difficulty in deter-

mining the sex of earlier instars.

Comparison with other studies

We performed Google Scholar searches using the keywords spotted lanternfly and Lycorma
delicatula, yielding over 600 references. Approximately 100 papers that directly studied SLFs

were used to perform repeated forward and reverse citation searches to find morphometric
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data for spotted lanternfly nymphs. This resulted in the identification of four papers with addi-

tional values of body length [6,15–17]. We also found one study that reported adult SLF body

length and mass, which agreed with our own observations [27]. One study reported morpho-

metric data for footpart and mouthpart dimensions [14]; here we consider their values for the

tarsal claw tip-to-tip distance (their TCT), the area, Aadh, of the arolium (adhesive pad) esti-

mated from their arolium morphometric data, as well as the lengths of the labium, LL, and sty-

let, LS, which is used to pierce plant surfaces for feeding. (See S2 Appendix for more

information about footpart measures.)

Data analysis and statistics

Data analysis was performed using MATLAB version R2021a with the curve fitting and statis-

tics and machine learning toolboxes (Mathworks, Natick MA USA); MATLAB functions are

referred to using italicized names. Results are reported as mean [95% CI] unless indicated oth-

erwise. All data and code required to reproduce all results and figures discussed here are

included in S1 Dataset.

All 4th instars were identified by their red, black and white coloring. Length and mass data

for all specimens with black and white coloration consistent with 1st through 3rd instars were

standardized before clustering by converting them into z-scores (i.e., zero mean and standard

deviation = 1). For the first clustering method, the standardized data were fit to a three compo-

nent Gaussian Mixture Model using fitgmdist (covariance type = full, shared

covariance = false), then sorted into three components (clusters) using cluster in MATLAB to

reflect the known number of instar stages in the dataset. We also partitioned only the length

data for the first, second and third instars into three clusters using the Gaussian Mixture

Model and kmeans for k-means clustering.

We next analyzed the mean lengths for each estimated instar to determine whether they fol-

low Dyar’s Rule, the observation that instar body dimensions increase in size by a constant

growth ratio between successive instars [28] This implies that log Lj = j × log G + log L0, where

j = instar number, L j = mean body length of the jth instar, and G = growth ratio = Lj+1 / L j

[18]. We used simple ordinary linear regression (MATLAB fitlm) to fit body length data from

this study and previous work vs estimated instar number; we also computed as goodness-of-fit

measures the F-statistic and p-value for significance testing (alpha = 0.05; null hypothesis no

dependence on the independent variable), and R-squared. We used MATLAB confint to find

95% CI of all fit parameters. To fit body length data from previous studies, we used either

means or middle of the quoted range, depending on which statistics were provided. (Table 1)

To determine the power law dependence of body mass on body length (i.e., M = a Lc), we

first log-transformed the M and L data, and then used simple ordinary linear regression to fit

to log M = a + c log L, as described above. The fitted slope (the scaling exponent, c) was used

to determine whether these data were consistent with the null hypothesis of isometric scaling

(i.e., c = 3), or instead with positive or negative allometry. (See full results in S4 Appendix).

We performed the same analysis for tarsal claw and mouthpart (stylet and labium) dimen-

sions from a previous study [14] vs body length to test for agreement with power law scaling

with body length, and isometric scaling(c = 1) in particular. Because scaling law fits to both

mouthpart lengths vs body length did not include any adult data within the fit confidence

intervals, we also performed fits to only the data for nymphs.

Previous research has found that the adhesive pad area, Aadh, scales linearly with body mass

for organisms over a wide range of taxa and body sizes [29]. For comparison, isometric scaling

predicts that Aadh1 L21M2/3. We therefore tested whether either of these relationships hold

for SLFs using published data for their arolium dimensions [14] to estimate the arolium area
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(S2 Appendix); we then performed scaling law fits to these data vs body mass using the meth-

ods described above. Because the arolium does not increase monotonically in size (i.e., it is

smaller on average for adults than for 4th instars) we fitted only the values for nymphs.

Results

Instar determination

The results of our morphometric measurements are shown in Fig 2 along with clustering data

using the GMM model for mass vs body length. (See full results in S3 Appendix.) The data

were sorted into identical clusters using GMM clustering for mass vs length and using k-

means on lengths only. The cluster centroids provide estimates for the mean body length and

mass for each life stage, which we compare with earlier studies in Fig 3. As can be seen in Fig

3A and Table 1, the body lengths for each instar agreed closely for the two years studied here,

but not with values from earlier studies. The body masses were lower for early instars for the

2022 data than for those in the 2021 data, but greater for 4th instars.

Fig 4A show the results from testing Dyar’s Rule for SLF instar body length for this study and

four previous studies. (See S4 Appendix for full results.) For every study except [6], body length

was significantly related to instar number and the linear fit explained over 97% of total variance in

the data in agreement with Dyar’s Rule. The fitted growth ratio for our 2022 data, G = 1.42 [1.25,

1.61], was consistent with that from 2021 and earlier studies (p> 0.95) (Fig 4B).

Allometry

The SLF nymph body mass vs length data followed power law scaling with significantly differ-

ent scaling exponents for the two years studied: 3.01 [2.94, 3.09] for 2021 data and 3.45 [3.34,

3.56] for 2022 (Fig 2); the results for 2021 were thus consistent with isometric scaling (c = 3)

while those for 2022 indicated somewhat positive allometry (c> 3 by 13%). (See S4 Appendix

for full results for all scaling law fits.) Given the close agreement between instar length distribu-

tions in 2021 and 2022, we only used 2022 data in the analysis of foot and mouthpart data

from [14]. Fit results revealed that power law models accounted for a high percent of total vari-

ance for the footpart dimensions considered (77% and 62% for TCT and Aadh, respectively).

This also showed that SLF tarsal claw tip-to-tip distance [14] scales with body length over all

SLF life stages with c = 1.33 [1.09, 1.56], indicating that this measure of the tarsal claws’ grasp

displays positive allometry (i.e, c> 1). (Fig 5A) SLF nymph arolium area depended on L with

scaling exponent cL = 2.49 [1.75, 3.23]; this corresponded to Aadh1M 0.89 ± 0.27 (2021) and M
0.73 ± 0.22 (2022), in agreement with the dependence found for other taxa (S1 Appendix, [29]

but not with isometry (Aadh1M2/3). (Fig 5B) By contrast, the fits shows that SLF nymph

mouthpart dimensions (labium length, LL, and stylet length, LS) were only weakly correlated

with body length (S4 Appendix, Fig 5B and 5C); i.e., power law scaling explains only 36% of

the total variance in these data.

Discussion

The results of this study lead to several conclusions. First, the distribution of measured data for

body mass and length for 1st to 3rd SLF instars were consistent with three non-overlapping

clusters of data in the approximate size ranges expected for these life stages from previous stud-

ies. We consequently used two methods to assign these data to three clusters: 1) GMM on both

mass and length data; 2) k-means clustering applied to length-only data. Both methods

resulted in identical cluster assignments. We also found consistent values for the growth ratio

between instars using Dyar’s Rule for all studies considered here.
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This indicates that easy-to-perform specimen body length measurements and k-means

clustering should be sufficient for instar determination. (In contrast to the distinct ranges

found for 1st to 3rd instars, the measured body length and mass data ranges for 3rd and 4th

instars overlapped in both years of our study. Due to the red coloration of 4th instar nymphs,

however, this overlap in ranges does not cause a logistical challenge for properly categorizing

these life stages.) The maximum range of variation in the body length of 1st through 3rd instars

were equal to 13–16% of the mean, confirming our expectation that the<4% variation

reported between sexes [6] would be small compared to the overall variation in body length at

each nymphal life stage.

Practical applications of these findings include the indication that clustering methods used

with an appropriate dataset of spotted lanternfly body lengths should facilitate determining the

Fig 2. Clustering of spotted lanternfly nymph mass vs length data. Body mass vs length (filled circles) for (A) 2021

and (B) 2022 data; cluster centroids are shown as black x markers and red lines indicate scaling law fits to all data.

Shaded ellipses show the 95% CI for each cluster based on the Mahalanobis distance; note that the shaded ellipses for

some clusters are covered by datapoints. (C) Symbols and horizontal lines show the means and ranges of lengths,

respectively, for each instar reported in previous studies (Table 1).

https://doi.org/10.1371/journal.pone.0265707.g002
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likely developmental stage of individual specimens in future studies. The clustering code pro-

vided could be used by other researchers to estimate the life stage of new specimens by per-

forming clustering on their own measurements, or our data (assuming environments and

other conditions similar to those in our study).

Fig 3. Comparison of body length and mass for each spotted lanternfly nymph stage from this study and previous

research. (A) Spotted lanternfly nymph body length vs instar from this study and previous work (Table 1). (B) Spotted

lanternfly nymph body mass vs instar from this study. Error bars are 95% CI for this study and the measures of

variance given in Table 1. (Lines between datapoints show overall trends).

https://doi.org/10.1371/journal.pone.0265707.g003
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Fig 4. Results from Dyar’s Rule analysis of data from this study and previous research. (A) Plots of spotted

lanternfly nymph log(body length) plotted vs estimated instar number as a test of Dyar’s rule. Markers show data from

this study and three previous papers, while lines indicate linear fits. (B) Growth ratios, G, from the fits in (A); dashed

line indicates the mean value for 2022 from this study. All error bars are 95% CI.

https://doi.org/10.1371/journal.pone.0265707.g004

Fig 5. Plots and fits showing how spotted lanternfly foot and mouthpart data relate to body size measures. A)

Plots of data and fit results for the dependence on log body length for (A) the log tarsal claw tip-to-tip width, TCT, (B)

arolium area, Aadh, (C) labium length, LL, and (D) stylet length, LS. Footpart and mouthpart morphometric data are

from [14], while nymph body length and mass are from this study and adult mass and length from [27]. (Fit lines and

95% confidence intervals from ordinary linear regression fits to power laws, as described in the main text).

https://doi.org/10.1371/journal.pone.0265707.g005
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Second, we consider the variability in these measures of body size. Whereas the body length

data were consistent for all nymphal life stages between the two years of our study, there was

considerable variation between our results and amongst the ranges found by other studies for

2nd-4th instars. We also found small but significant differences (-17% to +9%) between the

2021 and 2022 data for mean body masses at each life stage. This diversity of reported values

suggests that the range of each instar’s body size may indeed vary among different seasons and

environments. Additional data collected with uniform sampling and measurement methods

could help resolve whether time of first emergence, temperature, or other environmental fac-

tors influence the mass and length at different life stages. For example, these metrics could be

incorporated into studies of insect-plant interactions to elucidate the effect of diet on SLF

growth.

Third, these data also provide insights into the ontogenetic scaling of spotted lanternfly

nymph body metrics. Body mass scaled with body length for SLF nymphs with different expo-

nents consistent with an approximately constant overall geometric shape (isometric scaling,

2021) or slightly positive allometry (2022). This approach can be used with existing data to

provide insight into the biology of these insects. For example, Kim et al. [30] hypothesized that

earlier SLF instars should be more easily dislodged by wind than later nymphs due to their

smaller arolia, an idea with implications for how dispersal and control should depend on life

stage. However, SLF nymph arolium area (the morphometric measure relevant for adhesive

strength) from [14] was found to scale with extreme positive allometry with body length and

mass, in agreement with the scaling relationship found across taxa over 7 orders of magnitude

of body weight [29]. In combination with the finding of constant (i.e., size-independent) maxi-

mum adhesive stress between the arolium and surface for other insect adhesive pads (e.g., the

pulvilli of Coreus marginatus [30] and the arolia of stick insects in [31]) across all life stages,

this implies that SLF instars could have similar adhesive capabilities across life stages. The

reported monotonic increase in SLF falling-climbing cycle period with advancing date of the

year [8] could be due to factors other than arolium development, such as faster than isometric

growth of tarsal claw grasp along with the detailed morphometric changes reported in [14]

(increased wrinkling of the arolia surface and a larger terminal sticky lip in adult SLFs relative

to nymphs). These findings for adhesion are of especial interest because of the crucial role

transportation plays in the dispersal of SLFs, which are known to travel long distances by cling-

ing to vehicles and shipping containers [32].

By contrast, the analysis showed that the variation in the stylet and labium lengths was only

weakly correlated with body length for SLF nymphs [14]. This is consistent with the expecta-

tion that stylet length is correlated with preferred host plant tissue characteristics [33], as

opposed to insect size, given reports from the literature indicate that SLF nymphs only feed on

herbaceous and non-woody parts of plants (e.g., shoots, stems and leaves) while adults are able

to feed on bark-covered trunks [8,10,16,17,34].

Conclusion

We propose that body mass vs length curves could play a role similar to that of clinical growth

charts, filling the current gap in metrics of SLF development. These measures could serve as a

much-needed fitness benchmark [35] for interpreting data from field studies and laboratory

experiments to assess the impact of factors such as date of first emergence, molt schedule, tem-

perature, diet, and geographic location. Furthermore, the successful fits to Dyar’s rule provide

a measure of the growth ratio between successive instars, which might serve as an additional

metric for comparing populations grown under different circumstances. Another potential use

of these methods involves estimating the life stage of isolated SLF nymphs found in new
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locations as these insects expand their range. This information can play a valuable role in

determining the stage of infestation, informing control efforts as well as providing data useful

for tracking and modeling their spread. We therefore suggest that morphometrics of SLF

nymphs be incorporated into ongoing studies when possible so as to provide a wide range of

data for such applications going forward.
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