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Volatiles from male honeydew
excretions attract conspecific
male spotted lanternflies,
Lycorma delicatula
(Hemiptera: Fulgoridae)
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Kelly Murman1, Matthew Wallace3, Daniel Carrillo2

and Miriam F. Cooperband1*
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The spotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), is a

generalist phloem feeder that produces copious amounts of honeydew, which

in turn coats the understory. These insects form large aggregations covering

the trunks of some trees, while similar trees nearby mysteriously seem

unattractive. We investigated whether volatiles from SLF honeydew are

attractive to conspecifics by collecting honeydew from the field and testing it

for SLF attraction in a two-choice olfactometer. We found that honeydew

excreted by adult male SLF was significantly attractive to male SLF, but not

female SLF. Although the honeydew excreted by adult female SLF did not

significantly attract male or female SLF, both sexes showed a positive trend

towards attraction in response to female honeydew in the olfactometer.

Analysis of the headspace volatiles of honeydew was conducted, and

numerous semiochemicals were identified. Five of which, 2-heptanone, 2-

octanone, 2-nonanone, benzyl acetate, and 1-nonanol, were tested in two-

choice behavioral assays against a blank control. Benzyl acetate and 2-

octanone were attractive to both sexes, whereas 2-heptanone was only

attractive to males, and 2-nonanone only to females. The remaining

compound, 1-nonanol, repelled females, but not males. Although honeydew

has been reported as a source of kairomones for some natural enemies, this

may be the first report of sex-specific attractants for conspecific insects found

in the honeydew volatiles of a planthopper.
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Introduction

The spotted lanternfly, Lycorma delicatula, (Hemiptera:

Fulgoridae) (SLF) is an invasive species in Northeastern

United States. Although their preferred host plant is Ailanthus

altissima (Mill.) Swingle (Simaroubaceae) (1), they have a broad

host range, including economically important species such as

grapes, fruit trees and hardwood species (2). SLF causes damage

by extensive phloem feeding and a large volume of honeydew

secretion. This heavy feeding behavior, particularly during the

adult stage, has devastated some vineyards in Pennsylvania (3).

SLF has spread to numerous states and threatens agricultural,

residential, and industrial areas despite the establishment of a

restrictive quarantine zone in Pennsylvania and tripling

applications of insecticides (4). Tools for non-insecticide

control of this pest are in the early stages of development,

such as the potential use of biological control agents like

fungal pathogens (5), or parasitoid wasps (6). To implement

any broad-scale control program, the distribution of the pest

must first be determined. Therefore, our efforts have been aimed

at the development of traps and semiochemical lures in order to

develop survey, detection, and mass trapping tools (7–9).

Planthoppers perceive and respond to host plant volatiles (7,

8, 10), but little is known about the role of insect-produced

volatiles such as pheromones in fulgorids. Recently, however, we

documented evidence suggesting pheromone use may occur in

SLF. Mid (during mating time) male SLF were attracted to

extracts of Mid female SLF in laboratory behavioral bioassays

(11). In field studies, aggregation behavior was generated in wild

populations by placing groups of male or female SLF on trees in

sleeves, and the sex ratio of the arriving SLF was biased toward

the sex of SLF within each sleeve. Females, particularly before

mating, were strongly attracted to sleeves containing female SLF,

and Mid males were strongly attracted to sleeves containing Mid

females. Courtship behavior was mainly observed during Mid on

trees with confined females (12). Honeydew is produced by all

phloem-feeding hemipteran insects, such as aphids (13),

whiteflies (14), mealybugs (15), and planthoppers (16). For

predators and parasitoids that attack hemipterans, volatile

chemicals from honeydew are perceived as a kairomones,

facilitating host habitat discovery by parasitoid wasps (17),

coccinellids (18), chrysopids (19), mirid bugs (20), and flies

(21, 22). Chemicals associated with honeydew may also serve as

an oviposition stimulus for natural enemies (18, 23). The

prospect of SLF honeydew emitting semiochemicals is clear

from our observations of a variety of visiting hymenopterans

that use it as a food source (24). Placing confined groups of SLF

on trees generated aggregations of wild SLF in the field (12).

Since their honeydew is produced in copious amounts (24), it

was logical to investigate the potential role honeydew volatiles

may play in the process of conspecific SLF attraction and

aggregation. We hypothesized that SLF honeydew releases
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semiochemicals that inform other SLF about host resources,

aggregations, or mates. Therefore, we sought to test whether

volatiles from SLF honeydew were somehow involved in SLF

attraction. Thus, this study aimed to 1) evaluate how volatiles

from SLF honeydew influence SLF behavior, 2) identify any

behaviorally active components and 3) define their

behavioral function.
Methods

Timing

Developmental rates vary between year, location, and

microclimate, and depend on local meteorological conditions

such as degree days (25, 26). The adult stage of SLF is relatively

long-lived, with eastern Pennsylvania typically seeing adult

emergence in the end of July, mating in September, followed by

oviposition, and finally death in late October or early November, a

period spanning approximately 15-16 weeks. It is, therefore,

necessary to break down the lengthy adult stage into shorter

periods defined by their physiological state as it pertains to their

behavior. Thus, the three time periods previously described in (7),

“Early”, “Mid”, and “Late” were used. The onset of each adult

phase was defined by the first field observation of its

corresponding physiological state: adult emergence (Early),

mating (Mid), and oviposition (Late). The calendar dates of

these phases vary slightly depending on differences in latitude

and climatic conditions at different field sites, and were based on

the contemporary field observations at the collection sites. In

2019, start dates for adult phases were 22 July for “Early”, 8

September for “Mid”, and 22 September for “Late”.
Field collection of honeydew and insects

On a weekly basis, honeydew samples were collected from

SLF feeding on A. altissima in the field in Lehigh County, PA.

Woody, sun-exposed branches were carefully selected away from

overhanging branches to reduce honeydew falling from above.

Custom mesh sleeves (tulle, 30 cm L x 60 cm circ) were wrapped

around branches (5-7 cm diam), with three layers (7 cm thick) of

foam batting (Bug Barrier, Envirometrics Systems Inc., Victor,

NY) at the ends to space the tulle from the branch, secured by zip

ties, and closed lengthwise with lab tape (Research Products

International, Mount Prospect, IL). Wearing gloves, aluminum

foil (20 by 40 cm, Reynolds Consumer Products, Lake Forest, IL)

was suspended like a hammock below the branch inside of each

sleeve for honeydew collection (Figure 1). A group of either 20

male or 20 female adult SLF were placed inside each sleeve and

allowed to feed and produce honeydew for 48 h. In this way,

honeydew of known age, from a known number and sex of SLF,
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was collected on the foil. Four foil “honeydew hammocks” in

sleeves were installed per week: two with males and two with

females. After 48 hours, foil hammocks were removed, folded

with the honeydew inside, and individually placed into single-

use pre-baked oven bags which were tied tightly closed (Turkey

size, Reynolds Consumer Products, Lake Forest, IL). Oven bags

had been pre-baked at 150°C for 4 hours to remove volatile

contaminants such as caprolactam (27). These bags containing

the honeydew-laden foil were immediately placed in a cooler

with dry ice. In addition, a control piece of foil which was not

exposed to honeydew or SLF was handled and packaged in the

same way and placed into the cooler, in case volatile compounds

were inadvertently transferred to the foil during the handling

and shipping process. The cooler was shipped overnight to the

USDA Forest Pest Methods Laboratory (FPML) (formerly Otis

Laboratory) in Buzzards Bay, Massachusetts. Each week,

honeydew hammocks were set up on Monday, retrieved and

shipped overnight on Wednesday, received by the FPML on

Thursday morning, and used immediately upon arrival for

volatile collections and behavioral bioassays (see below). This

occurred weekly between 19 August and 27 September, 2019,

which spanned Early, Mid, and Late phases.

Every Monday, live SLF were captured from the field and

shipped overnight (as per conditions set by permits USDA

P526P-15-00152 and PA PP3-0123-2015). The live insects

were received on Tuesday at the FPML insect containment

facility for use through Friday of the same week in behavioral

bioassays and electrophysiology. There they were housed in

cages (24.5 × 24.5 × 63 cm, Bugdorm, Megaview Science Co.,
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Ltd., Taichung City, Taiwan) in an environmental chamber at 25

C with 16:8 L:D, and fed freshly cut A. altissima branches

maintained in hydroponic solution (Maxigrow, GenyHydro

Inc., Sebastopol, CA, prepared according to label).
Honeydew standardizing and headspace
volatile collections

It was necessary to standardize the amount of honeydew

used in behavioral bioassays using filter papers. Thus, the

amount of honeydew that could saturate a 5 mm x 10 mm

piece of filter paper was used in bioassays. All handling was done

wearing gloves. Prior to use, a filter paper (Whatman, grade 1,

12.5 cm circles, China) was cut into 5 mm x 10 mm rectangles

and washed by soaking them in a beaker containing 100 ml of

hexane for 5 min and allowed to air dry on clean foil. Upon

arrival of honeydew samples in the laboratory, one at a time,

each frozen foil honeydew hammock was removed from dry ice

and its oven bag, unfolded, and the foil was wiped with a pre-

washed 5 mm x 10 mm piece of filter paper held by a clean pair

of forceps until it became saturated. This filter paper was

immediately tested for attraction in the y-plate olfactometer in

a different room (described below). Additional filter papers were

used to collect as much of the remaining honeydew as possible

from the foil using the same technique until there was none left.

These remaining filter papers, laden with crude honeydew, were

used to collect and analyze the volatile headspace components of

the honeydew. They were placed inside a clean glass Pasteur
FIGURE 1

A custom mesh sleeve containing a foil “honeydew hammock” for SLF honeydew collection.
frontiersin.org

https://doi.org/10.3389/finsc.2022.982965
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Faal et al. 10.3389/finsc.2022.982965
pipette, and the wide end of the pipette was covered with

aluminum foil. An absorbent solid phase microextraction fiber

(SPME, 23 ga 100 mm polydimethylsiloxane, Supelco Inc.,

Bellfonte, PA) was selected because of its sensitivity in

detecting minute amounts of volatile molecules such as insect

semiochemicals, whereas preliminary attempts using other

volatile collection techniques lacked such sensitivity. The

SPME fiber was inserted through the narrow end of the

pipette and was exposed to the headspace of the honeydew-

laden filter papers for 2 h at 22°C. This process was repeated for

each foil hammock and the control.
Analysis of honeydew volatiles

Each SPME fiber was desorbed in the injection port of an

Agilent 7890B gas chromatograph (GC) coupled with an Agilent

5977A mass spectrometer (MS) (EI mode, 70 eV with a scanning

range of 40.0–450.0 m/z), using a DB-5MS capillary column

(Agilent, 30 m×0.25 mm i.d., 0.25 µm film thickness) in splitless

mode, with helium carrier gas at constant flow rate of 1 ml/min.

The injection port temperature was 280°C, and the oven

temperature was held at 40°C for 1 min, ramped at 10°C/min

to 300°C, then held for 25 min. Tentative identifications of the

honeydew volatile components were made by comparing mass

spectra with those in the mass spectral library database

(Enhanced ChemStation, MSD Chemstation, Data Analysis

software vF.01.00.1903, and NIST, v11, Agilent Technologies,

Santa Clara, CA). Close matches were confirmed by obtaining

and injecting authentic standards and comparing their Kovat’s

indexes (KI), retention times, and mass spectra to ensure they

matched. Compounds that were also present in controls are not

reported. Peak areas representing the total ion abundance for

each peak were used to calculate the percent (ratio) of each

identified compound over all SPME volatile collections

combined for each sex (4 Early, 2 Mid, and 1 Late). The sum

of peak areas for each compound was divided by the total sum of

all 13 compounds for males and for females to calculate ratios.
Antennal responses to volatiles

Gas chromatography coupled with electroantennographic

detection (GC-EAD) is a common electrophysiological

technique used to determine which compounds in a natural

volatile collection can be detected by an insect antenna (28).

However, the quantity of volatile material collected from

honeydew headspace was not enough for use in GC-EAD, since,

compared to known amounts of injected standards, we estimate

that the average peak size of honeydew headspace volatile

compounds collected by SPME fibers was approximately 8 ng.

Instead, antennal responses to synthetic standards of identified

components were recorded using an Agilent 6890 GC, fitted with
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an HP-5MS column (30 m × 0.320 mm I.D. × 0.25 mm film,

Agilent Technologies, Inc., Santa Clara, CA, USA) in splitless

mode. The injector and programmed temperatures were the same

as those described for the GC-MS. At the end of the GC column,

effluent was split 1:1 (glass Y-connector, Restek, Corp., Bellefonte,

PA), with half carried to a flame ionization detector (FID) at 250°

C, and the other half carried out of the GC via a temperature-

controlled arm (Syntech Temperature Controller, Kirchzarten,

Germany) at 150°C, and delivered into an L-shaped glass odor

delivery tube (11 mm diam.), which delivered the effluent over the

antenna. Charcoal-filtered, humidified air passed through the

odor delivery tube at 0.3 L/min.

An SLF head was mounted onto a ground electrode in the

form of a custom-pulled glass capillary filled with Ringer’s

solution (8). Adult SLF have soft and fleshy antennae (29)

which collapse when the integument is penetrated, hindering

early attempts at GC-EAD. Therefore, the apical tip of the arista

was removed with a razor blade, and brought into contact with

the glass capillary recording electrode, such that the remaining

portion of the arista was enveloped in the electrode. Electrodes

were positioned using custom micromanipulators (Signatone

Corp., Gilroy CA, USA) secured magnetically to a steel platform

(Syntech, Kirchzarten, Germany). Antennal signals were

amplified using a Dam 50 differential amplifier (World

Precision Instruments, Sarasota, FL, USA), passed through

Hum Bug 50/60 Hz noise elimination (Quest Scientific, North

Vancouver, BC, Canada), and integrated with a two-channel

signal acquisition interface (IDAC-2, Syntech, Hilversum, The

Netherlands). Data were collected and analyzed using GCEAD/

2014 software (Syntech, Version 1.2.5, Kirchzarten, Germany).

The electrophysiological activity of both male and female

antennae to synthetic compounds was determined by injecting

100 ng/ul of each compound, delivering 50 ng to the antenna

and 50 ng to the FID. All synthetic compounds were

manufactured by Sigma-Aldrich, Inc. (St. Louis, MO), except

(Z)-3-nonenyl acetate which was manufactured by Bedoukian

Research, Inc. (Danbury, CT).
Behavioral bioassays

The responses of male and female SLF when presented with

a choice between a volatile stimulus and no stimulus (control

arm) was evaluated using custom Teflon® Y-plate dual-choice

olfactometers [Supplementary File; for descriptions, see (7, 8,

30)]. Stimuli being evaluated were either (1) a honeydew-laden

filter paper, or (2) 1 mg of synthetic compound. Each Y-plate

was 28.6 cm long x 21.6 cm wide and 3.8 cm tall, with a channel

5.1 cm wide cut in the shape of a Y, with the choices at a 90°

angle from each other. A disposable sheet of clear acetate

(Apollo, Lincolnshire, IL) was affixed to the top and bottom of

the plate using electrode gel (Spectra 360, Fairfield, NJ) and

served as the ceiling and floor of the bioassay, and were
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discarded at the end of each session. Filtered, humidified air

flowed through the olfactometer at 24 cm/s. Prior to their use in

the olfactometer, SLF were allowed to acclimate individually

inside release cages at 25°C for 30-60 min in the walk-in

environmental chamber where bioassays were to be conducted.

Each session of bioassays started with a newly cleaned Y-plate

bioassay apparatus with all new disposable parts. At the

beginning of each session, five SLF were tested individually

without volatile stimuli to ensure there was no contamination

or other bias in the olfactometer. In addition, dedicated control

sessions were conducted using the identical protocols used for

semiochemical testing, but without chemical stimuli, in order to

document the baseline activity for SLF males and females under

these conditions. Each insect was individually released and

allowed three min to make a choice, which occurred when the

insect walked halfway up one of the two arms of the

olfactometer. Insects that did not make a choice in three min

were counted as non-responders. Each bioassay session,

evaluating a particular choice of treatment and control, tested

up to 20 individual SLF composed equally of males and females

in alternating order, ensuring that both sexes were offered

exactly the same stimuli. The next session used a clean Y-

plate, tested five more individual SLF without stimuli, then

tested the stimulus and control with directions reversed. After

each session, Y-plates and parts were washed with Alconox and

ethanol 95%, dried overnight, and disposable parts were

discarded and replaced. If the five control insects were found

to have a bias (more than 1 response in either direction), that Y-

plate was immediately replaced with a clean Y-plate, and the

biased Y-plate was cleaned again before use.
Frontiers in Insect Science 05
In bioassays testing standardized honeydew-laden filter

paper (described above) for attraction, a single piece of

hexane-cleaned filter paper was placed in the upwind section

of one arm of the olfactometer as a control, and the single (5 mm

x 10 mm) piece of filter paper laden with honeydew was placed

in same position of the other arm. In this experiment, each week

consisted of two sessions: one testing 10 males and 10 females,

alternating, to honeydew produced by males, and the other

testing 10 males and 10 females, alternating, to honeydew

produced by females. For each of these four tests, behavioral

data was collected over four weeks (3 Early and 1 Mid).

In behavioral assays with synthetic compounds, each upwind

arm received either the synthetic compound in an open

microcentrifuge tube, or an empty microcentrifuge tube control

(7, 8). Each synthetic compound was tested using 1 mg of neat

material (Sigma Aldrich, St. Louis, MO), and all insects used were

Early adults, except for an additional test of 1-nonanol using Mid

adults. The frequency and direction of choice was compared using

a Chi Square test, where significance at a=0.05 was reached when
the G-statistic reached 3.841 or above (31, 32).
Results

Analysis of honeydew volatiles

GC-MS analyses of SLF honeydew volatiles revealed the

presence of four ketones, six esters, and three alcohols, all of

which existed in both sexes but at different ratios (Table 1). Two

compounds in male honeydew occurred at ratios over 1.5 times
TABLE 1 A summary of the compounds found in the honeydew headspace volatiles collected from male and female spotted lanternflies, Lycorma
delicatula, between 19 August and 27 September, 2019.

Compound Relative percent
♂ ± SE (n=6)

Relative percent
♀ ± SE (n=7)

Ratios
♂ : ♀

Behaviorally Active1 Antennally Active Retention index

isoamyl acetate 29.5 ± 5.9 17.1 ± 3.4 1.7: 1 – M, F 875

2-heptanone 0.03 ± 0.2 0.1 ± 3.9 1: 3.6 Y M, F 887

2-octanone 5.9 ± 5.3 4.8 ± 4.1 1.2: 1 Y M, F 989

2-nonanone 3.0 ± 4.3 7.0 ± 5.3 1: 2.4 Y M, F 1088

2-phenyl ethanol 12.2 ± 2.9 19.6 ± 13.3 1: 1.6 – M, F 1108

2-ethylhexyl acetate 2.5 ± 1.6 4.5 ± 3.8 1: 1.8 – M, F 1146

benzyl acetate 24.5 ± 12.3 22.8 ± 4.9 1.1: 1 Y M, F 1150

1-nonanol 4.9 ± 5.4 5.9 ± 7.8 1: 1.2 Y M, F 1170

2-undecanone 1.2 ± 1.8 5.0 ± 3.9 1: 4.1 – M, F 1290

(Z)-3-nonenyl acetate 4.5 ± 1.0 4.3 ± 0.9 1: 1 – M, F 1290

nonyl acetate 9.1 ± 2.8 5.4 ± 1.2 1.7: 1 – M, F 1307

n-decyl acetate 2.7 ± 0.6 3.4 ± 0.7 1: 1.3 – M, F 1407

1-dodecanol 1.7 ± 0.4 2.1 ± 0.5 1: 1.2 – M, F 1470
1Behaviorally active components are indicated (Y). Minus signs “-” denote the compounds that were not tested in behavioral bioassays.
Antennal responses to synthetic compounds were recorded from both males (M) and females (F).
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higher than in female honeydew: isoamyl acetate and nonyl

acetate. Conversely, the ratios of five compounds were over 1.5

times higher in females than in males: 2-heptanone, 2-

nonanone, 2-phenyl ethanol, 2-ethylhexyl acetate, and 2-

undecanone. The ratios of 2-octanone, benzyl acetate, 1-

nonanol, and (Z)-3-nonenyl acetate, n-decyl acetate, and 1-

dodecanol were similar in the honeydew volatiles of both sexes

(Table 1). In GC-EAD analyses, all of these produced antennal

responses in both SLF males and females (Table 1). Due to

limitations in time and insects, only the first five compounds

found to have antennal activity in preliminary EAD recordings

were tested in behavioral assays: 2-heptanone, 2-octanone, 2-

nonanone, benzyl acetate, and 1-nonanol (Table 1).
Behavioral assays

Control sessions showed that alternating male and female

SLF tested in the olfactometer had low response rates and no

directional bias (Figure 2A). Honeydew volatiles from either

male or female SLF produced different levels of attraction of

males or females, compared to the control arm in the y-plate

olfactometer. By testing 5 mm x 10 mm filter papers saturated

with honeydew, potential unknown differences in amount of

honeydew production between males (which are smaller) and

females (which are larger) can be ruled out. Thus, differences in

male and female attraction likely can be ascribed to differences in
Frontiers in Insect Science 06
composition between the honeydew produced by males and

females. Male SLF were significantly attracted to the volatiles of

honeydew excreted by male SLF, with an overall response rate of

74% (G=13.72, a=0.001, df=1, n=35). Female SLF were not

attracted to male honeydew volatiles. Neither sex was attracted

significantly to female honeydew volatiles, however, both males

and females showed a trend towards attraction to female

honeydew volatiles that approached significance (Figure 2B).

In behavioral assays with synthetic compounds, benzyl acetate

was significantly attractive to both sexes during Early, 2-heptanone

was significantly attractive only to Early males, 2-octanone was

significantly attractive to Early females but males trended towards

it, and 2-nonanone was significantly attractive only to Early

females. Conversely, 1-nonanol trended in the opposite direction

for Early males and females, and had a significant repellent effect

on Mid females but not Mid males (Figure 2C).
Discussion

In the current study we described the behavioral function and

volatile profiles of honeydew derived from adult male and female

SLF. Adult males, but not females, were significantly attracted to

male honeydew volatiles. A trend of attraction by both male and

female SLF to honeydew volatiles derived from females suggests

that female honeydew volatiles may have shown attraction with

more replication or with more material in the olfactometer.
A

B

C

FIGURE 2

Choices made by male and female spotted lanternflies, Lycorma delicatula, in dual-choice bioassays comparing no stimulus to: (A) no stimulus
(controls); (B) volatiles emitted from honeydew excreted either by male (M) or female (F) conspecifics, and (C) synthetic compounds (1 mg)
found in honeydew volatiles. All tests were conducted using Early adults except where indicated. The numbers inside the bars indicate the
numbers of insects that responded to the respective choice within 3 min. The number of insects tested (n) (including non-responders) are
shown for each test. Asterisks represent a significant deviation from expected frequencies between two choices with critical a levels and
G-statistics provided (Chi Square test). Alpha below 0.05 is not significant (n.s.).
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Interestingly, the fact that male honeydew volatiles attracted only

male SLF in bioassays aligns with field results found by

Cooperband and Murman (12). In that study, wild male SLF

were attracted to host trees with sleeves containing confined

aggregations of males, resulting in a significantly male-skewed

wild sex ratio on those trees. Conversely, significantly more

female-biased wild SLF sex ratios occurred on trees that had

confined female aggregations (12). Strongly skewed sex ratios with

either male or female bias on different trees, or at different times in

the season, have been documented in SLF (12, 33, 34). Thus, a

potential mechanism for the observed phenomenon of extreme

sex ratio bias in SLF field aggregations is presented here.

Although all 13 compounds described here from SLF

honeydew headspace volatiles were eventually found to elicit

antennal responses, technical challenges in initially developing

EAD capabilities with adult SLF antennae hampered the

beginning of this study. Limitations in time and insects led us

to select only the first five compounds that were found to be

antennally active to test for attraction. The issues were resolved

in a subsequent year, and EAD was conducted again on all

compounds, which were all found to elicit antennal responses

from both male and female SLF. Unfortunately, conducting

behavioral bioassays on the remaining compounds was not

possible due to the time and logistical constraints when

working with this univoltine insect.

Volatiles from SLF honeydew headspace were identified as

ketones, esters, and alcohols. Similar chemical profiles were

documented from the honeydew headspace volatiles of both

sexes, but they occurred in different ratios. However, those

ratios were not fixed over time. This study did not seek to

evaluate seasonal changes in chemical ratios. Instead, we

reported the average ratios taken over the season from Early,

Mid, and Late adult SLF. Benzyl acetate attracted both Early males

and females in the y-plate olfactometer, whereas 2-heptanone

attracted only Early males, and conversely, 2-octanone and 2-

nonanone attracted only Early females. One identified compound,

1-nonanol, showed a significant repellent effect on Mid females

and no effect on Mid males. Preference differences between males

and females for specific ratios of the same chemicals might explain

whymale SLF were attracted to honeydew derived frommales, but

females were not. The fact that SLF produce large quantities of

honeydew that can be collected, and the sensitivity of the SPME

fibers and the GC-MS, facilitated our ability to collect and detect

the presence of minute quantities of volatile compounds. With an

average peak containing about 8 ng of material, however, we

cannot rule out the possibility of a sex-specific compound that

may be present below our level of detection.

Studies in other hemipterans have demonstrated the

importance of volatiles from honeydew in attracting natural

enemies. Honeydew volatiles described for several species

include hydrocarbons, disulfides, ketones, alcohols, aldehydes,

carboxylic acids, a pyrazine, and a monoterpene (14, 18, 21).

Most studies on honeydew were focused on carbohydrate contents
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as a food source for natural enemies and ants (35). Conspecific

and sex-specific attraction to honeydew has been documented to

occur in psyllids, in which only males were attracted to conspecific

honeydew, but the responsible compounds were not characterized

(36). To our knowledge, this is the first evidence of attraction to

conspecific honeydew volatiles in a planthopper.

It is well documented that SLF honeydew accumulates and

thickly coats the trunks and bases of A. altissima trees, and may

become white and frothy over time when SLF densities are high

(24) which can also produce a strong fermentation odor (MC,

pers. obs.). The honeydew in this study accumulated for only two

days on a clean foil surface. Although beyond the scope of the

current study, we should not ignore the potential role of microbes

dwelling in hemipteran honeydew as a source of volatiles which

may act as semiochemicals (37). Several studies isolated bacteria

from hemipteran honeydew (38, 39), the volatiles of which acted

as kairomones for natural enemies (21, 37) or mosquitoes (21). A

wide range of chemicals have been described from bacterial

volatiles, including alcohols, aldehydes, carboxylic acids, esters,

hydrocarbons, and ketones (40–42), but none were the same

compounds we collected from SLF honeydew headspace.

All of the compounds found in SLF honeydew are known to

occur in both plants (43–52) and insects (53–65). The five

compounds tested for attraction all serve as pheromone

components for species across multiple insect orders. For

example, benzyl acetate was found in pheromones of bees (53)

and bed bugs (54). The current study is the first report, to our

knowledge, of a planthopper species attracted to benzyl acetate.

In ants, 2-heptanone has been reported as part of an alarm

pheromone (55). We found sexual differences in SLF attraction

to 2-heptanone and 2-nonanone (Figure 2), and interestingly,

such sexual differences are present in other insects as well (56,

66). For example, 2-octanone, one of numerous compounds

found in the excreta of mixed sex groups of bedbugs Cimex

hemipterus, produced a positive attraction index in only male

bedbugs (56). The compound 2-nonanone has been reported as

an aggregation pheromone (57), sex pheromone component

(58), and alarm pheromone component in ants (55). In a fly,

1-nonanol was suggested as a female attractant (67).

There are numerous avenues one could pursue for additional

research, for instance, investigating whether the host plant species

being fed upon alters the volatile profile and attractiveness of

honeydew (68). Volatile and sugar profiles of hemipteran

honeydew may vary with different host plants (68). In the

current study, SLF honeydew was collected while they were

feeding on A. altissima. SLF have a wide range of host plants

with different volatile profiles (1, 8), but their host range narrows

as they develop, and adults accumulate on A. altissima (69, 70).

Examining the volatile profiles and attractiveness of SLF

honeydew produced while feeding on other host plants could be

a revealing way to study their host plant relationships and may

help narrow down important semiochemicals. Our bioassays used

1 mg lures, a dose previously used to test SLF attraction to host
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plant volatiles, or kairomones (8), which typically occur in larger

amounts than pheromones. Dose-response studies could reveal

whether the compounds are behaviorally active at the nanogram

range or lower, which is the range expected for a pheromone (71).

In addition, synthetic blends of honeydew volatiles in sex-specific

ratios should be tested for attraction of males and females.

In an effort to determine how SLF locate each other from a

distance for purposes of mating or the formation of aggregations,

this study evaluated SLF honeydew volatiles as a possible

mechanism for conspecific attraction, and described the

components of headspace volatiles from SLF honeydew. All

honeydew compounds elicited antennal responses from male

and female SLF adults, and the behavioral function for male and

female SLF of five of those compounds individually was described.

Our results introduce a potential new mechanism for SLF, and

perhaps other honeydew producers, to locate conspecifics in

response to semiochemical cues emitted from their own

honeydew. This mechanism also may be involved in driving the

male- or female- skewed SLF sex ratios observed to naturally occur

on different trees at specific times in adult development (12, 33).

Complete behavioral testing of each of the remaining compounds

as well as synthetic blends would help to fully understand this

system. In addition, dose response testing could improve our

understanding of behavioral function, as some compounds may

be attractive at low doses and repellent at high doses.
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Induced volatiles in the interaction between soybean (Glycine max) and the
Mexican soybean weevil (Rhyssomatus nigerrimus). Braz J Biol (2021) 81
(3):611–20. doi: 10.1590/1519-6984.227271

46. Patt JM, Stockton D, Meikle WG, Sé tamou M, Mafra-Neto A, Adamczyk JJ.
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