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Abstract: UDP-N-acetylglucosamine pyrophosphorylase (UAP) is a key enzyme in the chitin biosyn-
thesis pathway of insects. Here, we described the gene SfUAP in the white-backed planthopper
Sogatella furcifera (Horváth) with an open reading frame of 1470 bp. Quantitative real-time poly-
merase chain reaction (qPCR) suggested that SfUAP exhibits a different developmental expression
pattern and a higher expression after molting. The highest expression of SfUAP was observed in the
integument tissues of adults, whereas head tissues showed negligible expression. RNAi-based gene
silencing decreased the mRNA transcript levels in S. furcifera nymphs injected with double-stranded
RNA of SfUAP. Finally, SfUAP silencing led to 84% mortality and malformed phenotypes in nymphs.
Thus, our results can help better understand the role of SfUAP in S. furcifera.

Keywords: UDP-N-acetylglucosamine pyrophosphorylase; Sogatella furcifera; gene expression profiling;
RNA interference

1. Introduction

The white-backed planthopper S. furcifera is one of the most destructive insect pests of
rice plants in some Asia–Pacific countries. Recently, the outbreak frequency of S. furcifera
has been increasing in China [1,2]. This pest severely reduces rice yields by ovipositing,
sucking the rice phloem sap, and serving as a virus vector to transmit southern rice black-
streaked dwarf virus [3–5]. The application of chemical insecticides has been an effective
measure for controlling S. furcifera. However, the frequent and irrational use of these
insecticides has led to resistance against various insecticides in this pest [6,7]. Therefore, it
is urgent to discover more scientific and efficient pest management approaches to control
S. furcifera.

Chitin, a linear polymer of N-acetyl-β-D-glucosamine linked by β-1,4-glycosidic bonds,
is the second most prevalent biological polysaccharide in nature and is found in various
organisms, including microorganisms (yeast, mycelial fungi, and algae) [8,9], arthropods
(insects, mites, and crustaceans) [8–10], other invertebrates (nematodes, mollusks, and
sponges) [11,12], and some vertebrates (fish and amphibians) [13,14]. In insects, it plays an
essential role in the epidermis, peritrophic matrix (PM), and other internal structures; more-
over, chitin combines with sclerosis protein to constitute the cuticular exoskeleton [10,15,16].
A hard exoskeleton can help insects sustain their body shape and defend against external
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mechanical disruption [17]; however, it restrains insects’ growth and development. For this
reason, during insect growth and metamorphosis, chitin must be periodically degraded
by chitinase and synthesized via the chitin biosynthesis pathway. Once chitin degradation
or formation is disrupted, molting and metamorphosis are blocked, ultimately resulting
in insect death [18–23]. Further, the chitin biosynthesis pathway comprises several bio-
chemical reactions that are catalyzed via enzymes. In general, the pathway begins with tre-
halose; involves at least eight enzymes, such as trehalase, hexokinase, glucose-6-phosphate
isomerase, glutamine fructose-6-phosphate aminotransferase, glucosamine-6-phosphate-
N-acetyltransferase, phosphoacetylglucosamine mutase, UDP-N-acetylglucosamine py-
rophosphorylase (UAP) and chitin synthase; and ends with the chitin polymer [10,24]. To
date, several studies have reported on the chitin formation pathway in insects; however,
most focused on the first trehalase and the last chitin synthase [25]; knowledge regarding
the structural features and roles of other enzymes involved in this pathway remains limited.

UAP (EC 2.7.7.23), a vital regulatory enzyme in the insect chitin biosynthesis
pathway, specifically catalyzes the reaction of N-acetylglucosamine-1-phosphate with
uridine triphosphate to yield UDP-N-acetylglucosamine (UDP-GlcNAc), which is an
important substrate for the formation of chitin [24,26]. So far, UAPs have been iso-
lated and characterized from several insect species, including Locusta migratoria [25],
Bactrocera dorsalis [27], Tribolium castaneum [28], Spodoptera exigua [29], Aedes aegypti [30],
Cnaphalocrocis medinalis [31,32], Leptinotarsa decemlineata [33], Bombyx mori [34], and
Henosepilachna vigintioctopunctata [35]. Interestingly, most insects have been known to only
possess a single UAP gene, except T. castaneum, L. migratoria, and L. decemlineata, all of
which have two UAP genes (UAP1 and UAP2). RNA interference (RNAi) was used to
investigate their physiological functions, which demonstrated that silencing TcUAP1 or
LmUAP1 reduced chitin contents in the integument and PM, and thus arrested insect
growth [25,28]. Further, in L. decemlineata, silencing LdUAP1 only decreased chitin contents
in the integument, whereas the knockdown of LdUAP2 resulted in a reduction of chitin
contents in the PM [33]. In a previous study on Drosophila melanogaster, DmUAP mutants
(also called cystic, mummy, or cabrio) caused several defects in tracheal tubule and eye
development, central nervous system fasciculation, and cuticle formation [36–38]. These
results strongly suggest that each UAP gene plays a different role in insect development
and survival. However, the number and function of UAP genes in S. furcifera have not yet
been characterized. Furthermore, the mechanism by which UAP enzyme inhibition affects
the regulation of chitin biosynthesis in S. furcifera is yet to be investigated.

In this study, we identified and characterized a full-length cDNA of the UAP gene in
S. furcifera and assessed its expression patterns across different tissues and developmental
stages. Moreover, we investigated the roles of the SfUAP gene by RNAi. These results
are helpful in understanding the functions of chitin biosynthesis pathway components in
S. furcifera and provide a target for developing new biological pesticides.

2. Materials and Methods
2.1. Rearing S. furcifera

The S. furcifera used in this study were initially obtained from rice fields in Guiyang,
Guizhou Province, China, in 2013. They had not been exposed to any pesticides for
6 consecutive years and were routinely reared on Taichung Native-1 (TN1) rice seedlings in
a climatic chamber at 25 ± 2 ◦C, with 70 ± 10% relative humidity and a 16:8 h light/day
photoperiod. TN1 was grown on soil in a growth incubator at 30 ◦C ± 2 ◦C, with a 16:8
h light/day photoperiod. These insects were transferred to fresh rice seedlings every
15–20 days to ensure adequate nutrition.

2.2. Total RNA Isolation and cDNA Preparation

Total RNA was extracted from the whole body of S. furcifera using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. RNA
integrity was determined using 1% agarose gel electrophoresis, and their concentration and
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purity were assessed on a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). Before the analysis, all samples were stored at −80 ◦C. cDNA was
synthesized using the AMV First-Strand cDNA Synthesis Kit (Sangon Biotech, Shanghai,
China) with an oligodT primer, according to the user manual provided by the manufacturer,
and stored at −20 ◦C until analysis.

2.3. Cloning SfUAP Using Reverse Transcription Polymerase Chain Reaction (RT-PCR)
and RACE

Based on the partial sequences of SfUAP obtained from the transcriptome sequencing
data of S. furcifera [39], primers were designed via the Primer Premier 6.0 software using
cDNA as the template. PCR amplifications were conducted using the primer pairs listed in
Table 1 and L.A. Taq® polymerase (TaKaRa, Dalian, China) in 25µL of reaction mixtures
containing 2 µL of dNTPs (2.5 mM), 2.5 µL of 10× LA PCR Buffer (Mg2+ plus), 1 µL of each
primer (10 mM), and l µL of cDNA template. Thermal cycling conditions were as follows:
one cycle of predenaturation at 94 ◦C for 3 min; followed by 30 cycles of denaturation
at 94 ◦C for 30 s, annealing at 52 ◦C for 30 s, and extension at 72 ◦C for 2 min; and a
final extension at 72 ◦C for 10 min. Target bands of the amplified products were purified
using the EasyPure® Quick Gel Extraction Kit before using 1% agarose gel electrophoresis
(Transgen Biotech, Beijing, China). Purified DNA was cloned into a pMD18-T vector
(TaKaRa, Dalian, China) and sequenced using the Sangon Biotech sequencer (Shanghai,
China). Next, the BLAST analysis of the sequence was conducted using NCBI for further
validation, which identified a 770 bp fragment including the 3′ untranslated region.

Table 1. Primers used for cloning SfUAP genes of S. furcifera.

cDNA Fragment Primer Name Primer Sequence (5′–3′) Size (bp)

PCR1 UAP-F1 GAACGAGAGGAACTGTGT 770
UAP-R1 GTTGGTGACGACTTCTGT

5′RACE UAP-51 CCGTAAAGGTGTGATGGTAT 335
UAP-52 CATCTTGACACAGTTCCTCT 217

ORF confirmation
UAP-F GTTTTTCAACGATGTCAGAC 1490
UAP-R GGAGCTGAATTAATGTGAGTT

We used the SMARTer® RACE 5′/3′ Kit (Clontech, Mountain View, CA, USA) to
amplify the full-length cDNA of SfUAP. Further, 5′ RACE was used to amplify the 5′ end
using two nested gene-specific primers (GSPs), namely UAP-51 and UAP-52. The reaction
conditions for the primary RACE–PCR with the universal primer mix and GSP were
as follows: 35 cycles of denaturation at 94 ◦C for 30 s, annealing at 52 ◦C for 30 s, and
extension at 72 ◦C for 60 s. For the nested PCR reaction, we diluted the primary PCR
products 100 times, and then used them as templates with the universal primer short
and GSP. Notably, the nested PCR program followed the same conditions as the primary
PCR program. Following this, the PCR products were purified using the EasyPure®

Quick Gel Extraction Kit, subcloned into the pMD18-T vector, and sequenced via Sangon
Biotech sequencer.

2.4. cDNA and Amino Acid Sequence Analysis

The full-length sequence of the SfUAP gene was constructed by assembling the se-
quencing fragments using SeqMan software. DNAMAN 7.0 (Lynnon Biosoft, California,
CA, USA) was used to edit the nucleotide sequence. A similarity search and homology
comparison were performed using the NCBI BLAST program (https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 20 July 2019). The NCBI tool “open reading frame (ORF)
finder” was used to search the ORF (https://www.ncbi.nlm.nih.gov/orffinder/, accessed
on 20 July 2019). The molecular weight and isoelectric point (pI) of amino acids were
predicted based on the amino acid sequences deduced using the ProtParam tool at Ex-
PASy (https://www.expasy.org/, accessed on 28 July 2019). The N-glycosylation sites were

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.expasy.org/
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analyzed using the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/, ac-
cessed on 28 July 2019). The functional domains of the SfUAP protein were predicted online
using PROSITE (https://prosite.expasy.org/, accessed on 28 July 2019). The phylogenetic
tree was constructed via MEGA 6.06 using the neighbor-joining method, and bootstrap anal-
yses of 1000 replicates were performed to test the topology. The SWISS-MODEL program
(https://www.swissmodel.expasy.org/interactive, accessed on 28 July 2019) was used to
constitute the homology models of SfUAP, which were then visualized using the PyMOL
Molecular Graphics System 1.1.

2.5. SfUAP Expression in Different Developmental Stages and Tissues Using Quantitative
Real-Time PCR (qPCR)

S. furcifera was sampled from various stages ranging from egg to adult to determine
the expression of SfUAP at different developmental stages. To evaluate tissue-specific
expression, tissue samples were collected from the integument, fat body, gut, and head of
the first-day fifth-instar nymphs and from the ovary of 3-day-old adults. Three biological
replicates were used for each sample. First, total RNA was isolated from each sample using
the H.P. Total RNA Kit (with genomic DNA removal columns; Omega bio-tek, Norcross,
GA, USA) and then examined using 1% agarose gel electrophoresis to ensure their integrity.
The final concentration was assessed using a Nanodrop 2000 spectrophotometer. The first-
strand cDNA was synthesized from 2 µg of RNA using the AMV RT reagent Kit (Sangon
Biotech) with an oligodT primer. Table 2 lists the GSPs used for qPCR. It was performed
in a CFX-96 real-time qPCR system (Bio-Rad, Hercules, CA, USA) with 20µL of reaction
volumes containing 10 µL of FastStart Essential DNA Green Master (Roche Diagnostics,
Shanghai, China), 1 µL of cDNA, 1 µL (10 mM) of each primer, and 7 µL of RNase-free
water. The amplification conditions were as follows: an initial denaturation at 95 ◦C for
10 min, followed by 40 cycles at 95 ◦C for 30 s and at 55 ◦C for 30 s. After the reaction, a
melting-curve analysis was performed from 65 ◦C to 95 ◦C to confirm the specificity of the
PCR results. Our previous evaluations normalized data to the stable reference gene 18S
ribosome RNA (GenBank accession no. HM017250). The relative expression levels were
calculated using the 2−∆∆Ct method (Livak and Schmittgen, 2001).

Table 2. Primers used for qPCR analysis and dsRNA synthesis.

Experiments Gene Name Primer Name Primer Sequence (5′–3′) Size (bp)

qPCR analysis

SfUAP qUAP-F CAGCAGTAACCTTGTAGTCT 179
qUAP-R CGCAAACGATAGTCTCATT

18S RNA q18S-F CGGAAGGATTGACAGATTGAT 151
q18S-R CACGATTGCTGATACCACATAC

dsRNA synthesis

SfUAP dsUAP-F TAATACGACTCACTATAGGGCGA
GAACACCATCCGAAT 442

dsUAP-R TAATACGACTCACTATAGGG
TAGAGACCTCCGTTACCAT

GFP dsGFP-F TAATACGACTCACTATAGGGAAGGG
CGAGGAGCTGTTCACCG 707

dsGFP-R TAATACGACTCACTATAGGGCAG
CAGGACCATGTGATCGCGC

2.6. Functional Analysis of SfUAP

To further investigate the biological functions of SfUAP, RNAi was performed by
injecting S. furcifera nymphs with sequence-specific dsRNAs. First, GSPs containing the T7
promoter sequence at the 5′ end (Table 2) were used to synthesize dsRNA. Next, the plasmid
DNAs of SfUAP and GFP were used to synthesize templates for in vitro transcription
reactions via PCR using primers. To determine the specificity, PCR products were subcloned
and sequenced. The expected fragments were then purified using the EasyPure® Quick
Gel Extraction Kit (Transgen Biotech). Using a Nanodrop 2000 spectrophotometer, the

http://www.cbs.dtu.dk/services/NetNGlyc/
https://prosite.expasy.org/
https://www.swissmodel.expasy.org/interactive
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concentration and purity of the purified products were measured, and the integrity of
the products was examined on 1% agarose gel (Thermo Fisher Scientific, Wilmington, DE,
USA). Then, in vitro transcription was performed using these products.

The dsRNA was synthesized using the MEGAscript® RNAi Kit (Ambion, Carlsbad,
CA, USA) according to the manufacturer’s instructions. In vivo RNAi was performed in
S. furcifera nymphs as previously described [40,41]. First-day fifth-instar nymphs were used
for microinjection after being anesthetized with carbon dioxide for approximately 30 s.
Each group included 50 nymphs, and treatments were performed in triplicates. Overall,
100 ng of dsRNA was injected into the nymphs between the prothorax and mesothorax
using the Nanoliter 2010 Injector (World Precision Instruments, Sarasota, FL, USA). Next,
equivalent volumes of GFP dsRNA (dsGFP) were used for control injections. Until eclosion,
injected nymphs were reared on fresh rice seedlings as described previously. After that, the
phenotype and mortality were observed daily. Photographs were captured using a Keyence
VH-Z20R stereoscopic microscope (Keyence, Osaka, Japan). Subsequently, 10 nymphs were
selected randomly from each replicate for qPCR.

2.7. Statistical Analysis

Statistical analysis was conducted using SPSS 13.0 software (IBM Inc., Chicago, IL,
USA). Data values are expressed as the mean ± S.E. of three replicates. One-way analysis
of variance followed by Duncan’s multiple range test (p < 0.05), was used to calculate the
relative expression of each sample. For RNAi experiments, significant differences in mRNA
levels between dsRNA treatment and dsGFP groups were analyzed using t-test.

3. Results
3.1. Identification and Characterization of SfUAP

The full-length cDNA of SfUAP was obtained from DNA fragments amplified using
PCR and 5′-RACE (GenBank accession no. MF964941). The cDNA sequence of SfUAP is
2229 bp in size with an ORF of 1470 bp, a 5′ noncoding region of 105 bp, and a 3′ noncoding
region of 654 bp, which encoded a protein of 489 amino acid residues. Figure 1 presents the
complete nucleotide and deduced amino acid sequences of SfUAP. Using the ProtParam
Server, the molecular protein formula was determined to be C2433H3845N679O737S21, with a
theoretical molecular weight of 55.07 kDa and an isoelectric point (pI) of 6.37. Further anal-
ysis revealed that the protein lacks a signal peptide and transmembrane region, indicating
that SfUAP is a cytosolic protein. Residues at the substrate-binding site that aligned with
other known insect UAP proteins (Met108, Gly110–111, Met165, Gln197, Pro220, Gly222,
Asn223, Ser251, Val252, Leu289, Gly290, Glu303, Tyr304, Asn327, Phe383, and Lys407)
were found to be conserved; these are indicated using boxes in Figure 1. The conserved
UAP motif (GGXXTXXGXXXPK; X indicates any amino acid residue) was also identified
in SfUAP.

SWISS-MODEL homology modeling revealed that SfUAP comprises three domains
(Figure 2): an N-terminal domain with seven α-helices in the N-terminus and one β-pleated
sheet inserted into the main domain; a central domain with the Rossmann fold that consists
of eight β-pleated sheets sandwiched by eight α-helices, also known as the catalytic domain;
and a C-terminal domain with two β-pleated sheets and two α-helices connected to the
main domain.

3.2. Homology Comparison and Phylogenetic Analysis

Multiple amino acid sequence alignments revealed that SfUAP shared significant se-
quence homology with other insect UAP proteins, such as 97% identity to Nilaparvata lugens
UAP (AEL88647) and 69% and 63% identity to L. migratoria UAP1 and UAP2 (AGN56418
and AGN56419), respectively. Based on the amino acid sequences of yeast, nematode, aca-
rina, insect, and mammalian UAPs, a phylogenetic tree was constructed using MEGA 6.06
(Figure 3). The results revealed that the S. furcifera UAP first clustered with hemipteran
UAP, and then with UAPs from other organisms.
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Figure 3. Phylogenetic tree of UAPs in insects and other organisms. The tree was constructed using
MEGA 6 via the neighbor-joining method. Bootstrap analyses of 1000 replicates were performed;
bootstrap values are shown next to the branches. Organisms with the associated GenBank accession
numbers are as follows: AaUAP from A. aegypti (EAT47260), CqUAP from Culex quinquefasciatus
(EDS38218), BdUAP from B. dorsalis (AGE89783), DmUAP from D. melanogaster (NP_609032), SeUAP
from S. exigua (ACN29686), CmUAP from C. medinalis (AK090063), TcUAP1 from T. castaneum
(NP_001164533), TcUAP2 from T. castaneum (NP_001164534), AmUAP from Apis mellifera (XP_624349),
NvUAP from Nasoniavitripennis (XP_001602623), DcUAP from Diaphorinacitri (XP_008487541), ApUAP
from Acyrthosiphonpisum (XP_001944680), DnUAP from Diuraphisnoxia (XP_015363117), HhUAP from Ha-
lyomorphahalys (XP_014289230), NlUAP from Nilaparvatalugens (AEL88647), IsUAP from Ixodesscapularis
(EEC12000), MpUAP from Mustelaputorius (AES09131), CgUAP from Cricetulusgriseus (EGW06170),
RnUAP from Rattusnorvegicus (NP_001178859), HgUAP from Heterocephalusglaber (EHB12810), BtUAP
from Bostaurus (NP_001039869), HsUAP from Homo sapiens (NP_003106), MmUAP from Macacamulatta
(NP_001253838), ScUAP from Saccharomyces cerevisiae (NP_010180), and CeUAP1 and CeUAP2 from
Caenorhabditis elegans (NP_487777 and NP_500511, respectively).
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3.3. Expression of SfUAP at Different Developmental Stages and Tissues

We assessed the SfUAP expression profile at various developmental stages from the
egg to the adult nymph (Figure 4). The results revealed that SfUAP was expressed in
the 15 developmental stages examined. In embryonic stages, a high expression of SfUAP
was found early (day 1). In other stages, the relative transcript level of SfUAP was high
immediately after each centrifugation and then decreased rapidly. One-day-old adults
showed the highest levels of SfUAP expression, whereas 2-day-old fifth-instar nymphs
showed the lowest levels.
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Figure 4. Expression profiles of SfUAP at different developmental stages of S. furcifera. At 15 different
time points, expression levels in eggs, nymphs (from first- to fifth-instar nymphs), and adults were
determined using qPCR. The S. furcifera 18S rRNA gene was used as the internal reference. Relative
expression was determined based on the value of the lowest expression, which was arbitrarily set to
one. Data are represented as means ± S.E. of three biological replicates. EG1, first day of the eggs;
lL1, first day of first-instar nymphs; AD1, first day of adults. Different letters above the error bars
indicate significant differences at p < 0.05.

Transcript levels of SfUAP were evaluated in five tissue samples from fifth-instar
nymphs and female adults of S. furcifera (Figure 5). Integument tissues showed the highest
SfUAP transcript level, followed by the ovary, gut, and fat body tissues, whereas the head
tissues showed the lowest level.

3.4. Functional Analysis of SfUAP

To understand the physiological function of SfUAP, the specific dsRNA of SfUAP was
prepared in vitro and injected into 1-day-old fifth-instar nymphs. Total RNA was isolated
from these insects 72 h after dsRNA injection, and the silencing efficiency of the target
gene was detected using qPCR. As shown in Figure 6, the transcript level of SfUAP was
downregulated, and the expression of the target gene was reduced by 89.2% (Figure 6).
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The mortality rates of insects injected with SfUAP dsRNA were continuously moni-
tored (Figure 7). A significant downward trend in mortality rate was observed at 12 h after
injection. Furthermore, 84% of the individuals died before eclosion. Finally, 16% of nymphs
underwent molting to become adults, of which 2.7% exhibited abnormalities and died.
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Figure 7. Survival rates after injection with SfUAP dsRNA. The survival rate of the first-day fifth-
instar nymphs following the injection with SfUAP dsRNAs (100 ng of dsRNA was injected into each
nymph). Insect age is indicated in days; e.g., 5L1 represents the first day of fifth-instar nymphs; 5L2
and 5L2′ represent the first and second halves (12 h) of a day, respectively; A.D., adults. Data are
represented as mean ± S.E. from three biological replicates with fifty insects in each group.

Three malformed phenotypes were observed for the nymphs with fifth-instar individ-
uals injected with dsUAP (Figure 8). First, the old cuticle was markedly split, and although
the new cuticle was visible, the whole-body was unable to be released. Moreover, the
abdomens of these insects were extremely shrunken or twisted. Second, the wings were
not fully unfolded, and the old cuticles could not be shed off their bodies completely. Third,
the new cuticle of these stunted adults was not well-hardened and looked transparent.
Moreover, their wings were abnormal. All the malformed adults finally died.
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4. Discussion

UAP is one of the crucial regulators in chitin biosynthesis during the growth and
metabolism of insects. Furthermore, UAP is essential for the glycosylation of proteins and
sphingolipids; glycosylphosphatidylinositol linker biosynthesis and secondary metabolites
with N-acetylglucosamine; and the conjugation of 7-β-hydroxylated bile acids [36,42,43].
However, UAP has not been well studied, especially in hemipterous insects. Here, we
report the molecular and functional characterization of the UAP gene from a serious rice
pest, S. furcifera, for the first time.

We determined the full-length cDNA sequence encoding UAP from S. furcifera. The
SfUAP cDNA encoded a protein of 489 amino acid residues, with a slightly acidic pI. Similar
results have also been shown in L. migratoria [25], B. dorsalis [27], and C. medinalis [32]. We
presume this may be conducive to its function. Similar to the UAPs of other insects,
SfUAP contains 17 highly conserved amino acid residues, which may be vital for substrate
binding [25,27,28]. Protein sequence alignment across different organisms revealed that
SfUAP and NlUAP share 97% sequence identity. This degree of amino acid sequence
conservation is markedly higher than that of UAP orthologs from other organisms. Further,
phylogenetic analysis revealed that UAPs from S. furcifera and other hemipteran insects are
first clustered.

The stage-dependent expressions of the SfUAP transcript were investigated from the
egg to adult stages. Our data show that the transcript levels of this gene were markedly
different during the development of S. furcifera. Higher expression was detected in 1-day-
old adults, suggesting that their expression correlates with an increased chitin requirement
during eclosion. Furthermore, SfUAP expression significantly increased after each nymph
molting, decreased during the inter-molting phase, and increased again before the next
molt, which may be associated with nymph growth. This phenomenon was observed
in L. migratoria and B. mori, in which UAP expression was periodically repeated at each
molting cycle [25,34]. Additionally, we noted that the expression pattern of SfUAP was
similar to that of chitin synthase, which is responsible for chitin formation in T. castaneum,
Ostrinia furnacalis, N. lugens, B. mori, and S. furcifera [40,41,44–46]. Similar results were
reported in S. exigua, in which the expression of SeUAP was high at the egg stage, L22
(2-day-old second-instar larvae), L31, L42, L51, P0 (the day after pupation), P5, P7, and A3
(3-day-old adults), correlating with a high demand for chitin biosynthesis [29]. A study
on B. dorsalis indicated that although BdG6PI and BdUAP were expressed at all develop-
mental stages, their levels were significantly higher in 1-day-old adults [27]. Similarly, in
T. castaneum, the expression of both TcUAP1 and TcUAP1 was detected at all developmental
stages, including trace amounts at the embryonic stages [28]. Overall, the expression profile
of UAP in S. furcifera indicates that it is crucial for insect growth and development.

We further determined the tissue-dependent expression pattern of SfUAP using qPCR.
The highest expression of SfUAP was detected in the integument. These findings are
consistent with those in S. exigua, in which SeUAP is highly expressed in the integument
and ovary, but not in the malpighian tubules and fat body [29]. Similarly, UAP1 from
T. castaneum and L. migratoria is mainly expressed in chitin-containing structures, such
as the integument and gut [25,28]. However, a recent study on B. dorsalis showed that
BdG6PI and BdUAP were highly expressed in the integument, and the highest levels of the
transcript were found in the malpighian tubules [27]. Moreover, we discovered that SfUAP
was substantially expressed in the ovaries. A similar expression pattern for chitin synthase
was noted in Mythimna separata and S. furcifera [23,41]. In another study, chitin was shown
to be expressed in the ovaries of A. aegypti. Additionally, SfUAP was expressed in other
chitin-containing tissues, such as the fat body, gut, and head. The different expression
pattern of SfUAP indicates that although this gene plays a major role in chitin biosynthesis,
it may have additional functions in other pathways due to its expression in various tissues.

To ascertain the physiological roles of SfUAP, RNAi was used to silence the target gene
in fifth-instar nymphs. When first-day fifth-instar nymphs were injected with dsRNA, the
relative expression of SfUAP was significantly suppressed. The RNAi-mediated inhibition
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of the SfUAP transcript eventually affected the growth and development of nymphs and
led to high mortality. Our results are consistent with those found in other insects. In
B. dorsalis, injection of BdUAP dsRNA into the third-instar larvae significantly decreased the
expression of UAP, leading to a lethal phenotype [27]. In L. migratoria, silencing LmUAP1
in the nymphs caused 100% insect mortality [25]. In S. exigua, injection of SeUAP1 dsRNA
into the fifth-instar larvae disrupted the larval–pupal transition and led to the production
of deformed pupae [29]. Thus, the physiological function of UAP in the nymph or larva
molting is conservative in different insects. In adult beetles, RNAi for either UAP led to
the cessation of oviposition and depletion of the fat body, leading to high mortality [28].
Thus, UAP may play roles that are unrelated to chitin biosynthesis in insects, such as
protein glycosylation or secondary metabolite; moreover, whether SfUAP plays similar
physiological roles in S. furcifera remains to be elucidated. Interestingly, in our earlier
studies, similar phenotypes were observed in S. furcifera after RNAi silencing SfCHS1 [41].
Altogether, these findings suggest that SfUAP and SfCHS1 play interactive and essential
roles in chitin formation and are important for the ecdysis and development of S. furcifera.
This finding is supported by the findings of previous studies where silencing SeUAP
reduced the expression levels of downstream genes (chitin synthase genes: SeCHSA and
SeCHSB), particularly SeCHSB [29]. In summary, our results revealed that the knockdown
of SfUAP can cause high mortality in S. furcifera, suggesting that SfUAP is a candidate gene
for developing biological control measures against S. furcifera.

5. Conclusions

We cloned and characterized SfUAP, which is involved in the chitin biosynthesis
pathway, from S. furcifera. During insect development and molting, this gene exhibits a
distinctive expression pattern. Tissue-dependent expression indicated that SfUAP is mainly
expressed in the integument. RNAi-based gene silencing decreased the expression levels of
the target gene, led to malformations, and killed most insects. Overall, our findings not
only shed light on the functions of UAP in the planthopper, but also provide a potential
target for RNAi-based S. furcifera control.
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