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Abstract 

The eThekwini municipal region and surrounding areas (Durban, Kwazulu-Natal, South 

Africa) are situated within the globally important Maputaland-Pondoland-Albany biodiversity 

hotspot. The biodiversity present in this region is under significant pressure from urbanization and 

climate change. This highlights the need to provide tools that can assist in the discovery and 

identification of species at an accelerated pace, to create biodiversity inventories which can be 

used for appropriate conservation planning. The creation of species inventories is a difficult task, 

more especially for hyper-diverse groups such as terrestrial arthropods. These groups can be 

morphologically cryptic or difficult to identify using traditional morphology-based taxonomy. 

Therefore, molecular-based methods of species identification have been proposed to assist in 

traditional taxonomy. DNA barcoding has been suggested as a mechanism which enables 

biologists to “label” or “tag” species, using nucleotide variations in short sequences known as 

DNA barcodes. This study investigates the utility of DNA barcoding and the use of the 

mitochondrial cytochrome oxidase c subunit 1 (COI) marker to identify species of Hemiptera 

efficiently and accurately. This study presents a preliminary DNA barcode reference library for 

Hemiptera collected from 18 different localities within and around the eThekwini municipal 

region. To test the success of DNA barcoding and the COI marker, matches between 

morphospecies and barcode clusters (BINs) were analyzed and the presence of the DNA barcode 

gap in the data was examined. The DNA barcode gap is the gap between the intraspecific and 

interspecific genetic distances, the lack of the DNA barcode gap suggests that taxa cannot be 

reliably sorted into species based on the genetic data. Analyses revealed that DNA barcoding using 

the COI marker is a successful method of identifying Hemiptera species in this study. Thereafter, 

a case study was selected within the Buffelsdraai Landfill Site Community Reforestation Project, 

to test whether DNA barcoding could be used to assess the potential of Hemiptera as an indicator 

of ecological restoration success. The Hemiptera species composition and assembly were assessed 

by analyzing multiple diversity indices, ordination, UPGMA cluster analysis and phylogenetic 

analysis. Hemiptera was seen to be sensitive to changes in an ecosystem which make this order an 

effective environmental and biological indicator. With the help of DNA barcoding, specific 

families of Hemiptera were identified as habitat-specific and good biological indicators for future 

studies of ecological restoration and reforestation.   
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Chapter One 

Literature review 

 
1.1 Urbanization and biodiversity 

The rapid increase in the world’s population has resulted in a vast movement of people from 

rural areas into urban areas (Grimm et al. 2008; Moorhead & Philpott 2013). Current estimates 

suggest that there are more than 6 billion people around the world living in urban areas (Magura 

et al. 2010; Moorhead & Philpott 2013). This shift is known as urbanization and is considered a 

form of environmental disturbance with important ecological and evolutionary consequences 

(Rebele 1994; Buczkowski & Richmond 2012). Urbanization is responsible for many land-use 

changes, such as habitat loss and fragmentation, that result in the alteration and modification of 

natural habitats (Rebele 1994; Miyashita et al. 1998; Gibbs & Stanton 2001; Buczkowski & 

Richmond 2012; Moorhead & Philpott 2013). Urban areas are densely populated and comprise of 

a highly diverse mosaic of land-use types which include residential, commercial, industrial, and 

infrastructural developments (Magura et al. 2010; Jones & Leather 2012). Interspersed between 

these highly transformed habitats are residual patches of natural habitats, which can are referred 

to as green spaces within cities (Magura et al. 2010; Jones & Leather 2012). The current increase 

in the human population indicates that urbanization is set to continue at an accelerated pace (Jones 

& Leather 2012). Therefore, understanding the impact of land-use changes on the environment 

and on the distribution and abundance of biodiversity in urban areas, specifically within the green 

spaces, is a research priority (Savard et al. 2000; Gibbs & Stanton 2001; Grimm et al. 2008; 

Buczkowski & Richmond 2012). It is also important to understand how green spaces within cities 

can offer refuge for species which would otherwise be displaced by urbanization. 

Over the last decade cataloging and understanding the distribution of biodiversity has been at 

the forefront of worldwide conservation efforts (Savard et al. 2000). Biodiversity can be defined 

in many ways, but the most common definition is the variety of life that transcends all levels of 

life from genes to communities (Salwasser 1990; Savard et al. 2000). The definition of biodiversity 

also includes the genetic difference within and between species; greater species diversity ensures 

natural sustainability for all life forms (McKinney 2008).  
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The presence of high-quality biodiversity in urban areas have intrinsic value and provides 

essential ecosystem services to communities that live around the green spaces within the cities 

(McKinney 2008). These services include the purification of air and water, therefore, protecting 

biodiversity is of both local and global interest (McKinney 2008). Biodiversity comprises of two 

main attributes; richness and evenness. Richness is the number of species found in an area and is 

usually referred to as species richness. Evenness is the proportion of species or functional groups 

present in each area. A region with low evenness indicates that only a few species dominate the 

area. 

Urbanization is responsible for the decrease in both species richness and evenness for most 

biotic communities (McKinney 2008). In contrast, some species find urban areas favorable for 

their survival while other species are forced to adapt resulting in a shift in community structure 

(McKinney 2008; Jones & Leather 2012). For example, urbanization may be responsible for the 

alteration of species composition by causing a shift from the presence of specialized species to 

generalist species that are better able to exploit urban environments (Grimm et al. 2008; McKinney 

2008; Jones & Leather 2012). As urbanization increases, urban green spaces become important for 

the promotion of biodiversity (Savard et al. 2000; McKinney 2008; Jones & Leather 2012). 

Biodiversity and ecosystems should be valued and managed as part of the urban environment, 

therefore, green spaces should be accounted for and included in urban planning (Savard et al. 2000; 

Jones & Leather 2012).  

1.1.1 Importance of species identification and discovery 

The escalating extinction crisis shows the pressure that humanity is placing on the planet. The 

rapid extinction of species has been referred to as the “global biodiversity crisis” (Alroy 2002; 

Brooks et al. 2006; McKinney 2008; Telfer et al. 2015). According to the International Union for 

Conservation of Nature (IUCN), it is estimated that by mid-century around 30% - 50% of all 

species on earth will be heading towards extinction (Thomas et al. 2004). The current biodiversity 

crisis is one of the most severe in the history of multi-cellular life on earth (Alroy 2002; Brooks et 

al. 2006). There is great uncertainty as to the number of species at risk of extinction due to 

incomplete taxonomic coverage for some groups (Alroy 2002; Hebert et al. 2003; Meyer & Paulay 

2005; Smith et al. 2005; Swartz et al. 2008). In particular, highly diverse groups that have many 

morphologically cryptic species which are poorly studied may be problematic (Alroy 2002). This 



 

3 
 

highlights the need to provide tools that can assist in the discovery and identification of species at 

an accelerated pace, to create biodiversity inventories which can be used for appropriate 

conservation planning and to highlight species that are threatened by extinction (Savard et al. 2000; 

Alroy 2002; Hebert et al. 2003; Smith et al. 2005; Jinbo et al. 2011; Telfer et al. 2015).  

Traditional morphology-based taxonomy has made progress in species identification and 

discovery, however, there is still work to be done. With the use of traditional taxonomy, studies 

show that over the past 250 years; only 1.2-1.8 million species have been identified and described 

out of an estimated 7-15 million species (Alroy 2002; Hebert et al. 2003; Meier et al. 2006; Swartz 

et al. 2008; Packer et al. 2009; Chapple & Ritchie 2013; Ajmal Ali et al. 2014). The low 

identification rate is a concern for conservationists and scientists as species may be extinct before 

identification (Alroy 2002; Smith et al. 2005; Swartz et al. 2008). This presents a problem for 

conservation planning and prioritization because species that have not been identified cannot be 

protected efficiently. 

1.1.2 Taxonomy 

Taxonomy also known as ‘alpha taxonomy’ is the backbone of species identification, 

classification, and discovery (Pires & Marinoni 2010; Ajmal Ali et al. 2014). It is the driving force 

behind the construction of the phylogenetic tree of life, the construction of biodiversity inventories 

and it helps provide baseline data for conservation and ecological studies (Wilson 2004; Pires & 

Marinoni 2010; Ajmal Ali et al. 2014). Without taxonomy, scientists cannot accurately report 

experimental results or access published information on species (Meier et al. 2006; Pires & 

Marinoni 2010). Traditional taxonomy sorts specimens and groups them into taxonomic units by 

using multiple morphological characteristics, similarity, and contiguity to delineate species (Ajmal 

Ali et al. 2014; Decraemer & Backeljau 2015). Species are usually named using the Linnaean 

nomenclature (Decraemer & Backeljau 2015). To accurately discover and identify species, special 

skills through extensive training and experience are required. As such, species identification is 

usually performed by expert taxonomists, and trained technicians (Hebert et al. 2003; Jinbo et al. 

2011). 

The greatest challenge placed on traditional morphology-based taxonomy is the slow rate at 

which taxonomists can identify and describe species (Hebert et al. 2003; Smith et al. 2005; Meier 
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et al. 2006; Jinbo et al. 2011). Current taxonomists cannot cope with the overwhelming need to 

create species inventories and are faced with a lack of funding for basic taxonomic research 

resulting in the decline of taxonomic expertise (Swartz et al. 2008; Pires & Marinoni 2010). In 

addition, Hebert and colleagues (2003) highlighted four major limitations using traditional 

morphology-based taxonomy. First, phenotypic plasticity and variability in the morphological 

characters used for species identification may lead to the incorrect assignment of specimens to 

species (Hebert et al. 2003). Second, morphologically cryptic species may be overlooked (Hebert 

et al. 2003). Third, the lack of taxonomic keys to identify specimens at different life stages and 

different genders may lead to incorrect identification of species (Hebert et al. 2003; Swartz et al. 

2008). Finally, high levels of expertise are required for traditional taxonomic assignments which 

are a problem given the current decline in taxonomists (Hebert et al. 2003). Due to the challenges 

and limitations of traditional taxonomy, alternative, and complementary approaches to identify 

species are needed (Lambert et al. 2005; Pires & Marinoni 2010; Jinbo et al. 2011).  

1.1.3 Molecular-based taxonomy 

Molecular-based methods of species identification have been proposed to assist in taxonomy 

(Lambert et al. 2005; Pires & Marinoni 2010; Jinbo et al. 2011). Molecular approaches exploit the 

diversity among DNA sequences to classify organisms, as there is expected to be less genetic 

diversity among taxa that belong to the same taxonomic grouping (Hebert et al. 2003). DNA 

sequences can be used to assess the diversity of life and the analysis of evolutionary relationships 

within and among groups of organisms (Stoeckle 2003; Hajibabaei et al. 2007). 

The main justifications for using a DNA-based system is that sequences can be used for the 

identification of species and species boundaries in populations of morphologically similar 

organisms, thus accelerating cryptic species discovery (Hebert et al. 2003; Stoeckle 2003; Lambert 

et al. 2005; Jinbo et al. 2011; Nunes et al. 2014). Biotechnology and systematics are both rapidly 

progressing fields and are needed to play a practical role in taxonomy (Smith et al. 2005; Jinbo et 

al. 2011). These fields have contributed to the establishment of DNA barcoding as a 

complementary system to morphology-based species identification (Smith et al. 2005; Jinbo et al. 

2011). DNA barcoding has been suggested as a mechanism which enables biologists to “label” or 

“tag” species, using nucleotide variations in short sequences known as DNA barcodes (Hebert et 

al. 2003). 
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1.2 DNA Barcoding 

The beginning of the DNA barcoding era started in 2003 when researchers (Hebert and 

colleagues, 2003) at the University of Guelph in Ontario, Canada proposed DNA barcoding as a 

way of identifying species (Hebert et al. 2003; Meyer & Paulay 2005; Jinbo et al. 2011; Nunes et 

al. 2014). The advantages of DNA barcoding include being able to sort specimens to a species 

level in a relatively rapid, accurate, automated, and cost-effective manner (Hebert et al. 2003; 

Hebert & Gregory 2005; Meyer & Paulay 2005; Jinbo et al. 2011; Nunes et al. 2014). DNA 

barcoding is no replacement for traditional-morphology based taxonomy, however, it is used to 

aid the taxonomic workflow and complement traditional taxonomy, thus making the Linnaean 

taxonomic system more accessible to non-taxonomic experts (Hebert & Gregory 2005; Hajibabaei 

et al. 2007). DNA barcoding uses short, standardized gene regions as internal species tags (Hebert 

et al. 2003; Hebert & Gregory 2005; Kress & Erickson 2008; Luo et al. 2011; Chapple & Ritchie 

2013).  

In May 2004, a project known as The Consortium for the Barcode of Life (CBOL) was 

established with the main aim of developing a standard protocol for DNA barcoding and providing 

bioinformatic solutions to facilitate the storage, analysis, and curation of DNA barcode data 

(Hajibabaei et al. 2007; Ratnasingham & Hebert 2007; Pires & Marinoni 2010; Jinbo et al. 2011). 

This project has grown rapidly and now includes more than 170 organizations from 45 nations 

(Ratnasingham & Hebert 2007; Pires & Marinoni 2010; Jinbo et al. 2011). The Barcode of Life 

Data System (BOLD) is an online database which can provide an integrated bioinformatics 

platform and support all stages of the analytical pathway of the DNA barcoding process from 

specimen collection to the DNA-based identification of specimens to species (Ratnasingham & 

Hebert 2007). The success of this global barcoding initiative rests on the construction of a 

comprehensive DNA barcode reference library for all life on earth (Meyer & Paulay 2005; 

Ratnasingham & Hebert 2007; Virgilio et al. 2010; Jinbo et al. 2011; Nunes et al. 2014). 

1.2.1 Selection of the mitochondrial cytochrome c oxidase 1 (COI) gene as the standard 

identification marker 

In 1977, Carl Woese was the first researcher to investigate the difference between nucleotide 

sequences of a single gene to understand evolutionary relationships (Woese & Fox 1977; Hebert 
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et al. 2004). He illustrated that analyzing sequence differences using a conserved gene such as 

ribosomal RNA (rRNA) could be used to infer phylogenetic relationships (Woese & Fox 1977; 

Hebert et al. 2004). Researchers then investigated the use of genes that evolve rapidly to 

differentiate among closely related organisms (Brown et al. 1979; Hebert et al. 2004). The results 

of this investigation showed that rapidly evolving genes can provide insight into both the genetic 

relationships among closely related species and the genetic variability within species (Brown et al. 

1979; Hebert et al. 2004). Most studies that focus on the relationship among closely related species 

use markers from the mitochondrial genome because it has a higher rate of nucleotide substitution 

than the nuclear genome (Brown et al. 1979; Hebert et al. 2004).  

For a gene region to be considered as a DNA barcode, the region must satisfy three criteria 

(Kress & Erickson 2008). First, the gene must contain a significant species-level genetic variability 

(Kress & Erickson 2008). Second, it must contain conserved flanking sites for universal PCR 

primers to be developed that can be used for wide taxonomic application (Kress & Erickson 2008). 

Last, the gene must have a short sequence length to facilitate easy DNA extraction and PCR 

amplification (Kress & Erickson 2008). The standardized DNA barcode used in most animal 

groups is a 658-base pair (bp) protein-coding region known as the mitochondrial cytochrome c 

oxidase 1 (COI) gene (Hebert et al. 2003; Hajibabaei et al. 2007; Ratnasingham & Hebert 2007; 

Kress & Erickson 2008; Luo et al. 2011; Nunes et al. 2014). This region is easily amplified and 

Sanger sequenced using universal primers (Folmer et al. 1994; Vrijenhoek 1994; Hebert et al. 

2004; Nunes et al. 2014). The COI region is easily alignable as insertions and deletions are not 

common and this mitochondrial gene contains enough DNA mutations to provide resolution at the 

species level (Hebert et al. 2004; Barrett & Hebert 2005; Nunes et al. 2014). 

Despite being successfully used in many animal groups such as Aves (Hebert et al. 2004), 

Lepidoptera (Hebert et al. 2003) and Araneae (Barrett & Hebert 2005), the use of a single marker 

to determine species has been criticized (Moritz & Cicero 2004). Although this gene fragment is 

often used in animal barcoding studies, it is not effective in plants and fungi (Hebert et al. 2003; 

Kress & Erickson 2008; Chase & Fay 2009; Hollingsworth 2011; Jinbo et al. 2011). Instead, two 

standard barcoding regions are used in plants; these regions are situated in the plastid (chloroplast) 

genome and include the rbcL and matK genes (Kress & Erickson 2008; Chase & Fay 2009; 

Hollingsworth 2011; Jinbo et al. 2011). In fungi, the internal transcribed spacers (ITS) of the 
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nuclear ribosomal DNA region are used for DNA barcoding (Kress & Erickson 2008; Chase & 

Fay 2009; Hollingsworth 2011; Jinbo et al. 2011). 

1.2.2 DNA Barcode Gap as a measure of identification accuracy 

One of the main requirements of DNA barcoding is a database containing reference sequences 

from already described species that can be used as part of an automated identification system 

(Ratnasingham & Hebert 2007; Jinbo et al. 2011). The BOLD database is a very useful 

bioinformatic tool for biodiversity researchers, as it allows free access to a large amount of data of 

taxa collected from all around the world (Hajibabaei et al. 2007; Ratnasingham & Hebert 2007; 

Jinbo et al. 2011). Sorting of taxa into species using DNA barcoding is done using genetic distance 

thresholds (Barrett & Hebert 2005; Meyer & Paulay 2005; Wiemers & Fiedler 2007). When 

comparing an unknown sample to known samples there are one of two outcomes. First, if the 

genetic distance of the unknown sample is less than the threshold value of an existing sample, it is 

assumed that the two samples represent the same species (Meyer & Paulay 2005; Wiemers & 

Fiedler 2007). Second, if the genetic distance of the unknown sample is greater than the threshold 

value of existing samples, distinctness is indicated and it is then assumed that the unknown sample 

represents a new taxon (Meyer & Paulay 2005; Wiemers & Fiedler 2007).  

An important consideration of DNA barcoding is identification accuracy (Meyer & Paulay 

2005). Identification accuracy using threshold-based approaches relies on the level of overlap 

between intraspecific and interspecific variation across a selected phylogeny (Meyer & Paulay 

2005). The existence of the ‘DNA barcode gap’ in a dataset, is a useful way of predicting whether 

DNA barcoding will be successful for the taxon of choice (Hebert et al. 2003). The DNA barcode 

gap is the separation between the mean intraspecific and interspecific genetic distance (Meyer & 

Paulay 2005; Wiemers & Fiedler 2007; Puillandre et al. 2012; Čandek & Kuntner 2015). The DNA 

barcode gap occurs when the interspecific genetic divergence is greater than the intraspecific 

genetic variation (Figure 1A) (Barrett & Hebert 2005; Wiemers & Fiedler 2007; Luo et al. 2011; 

Chapple & Ritchie 2013). This gap indicates that the selected marker used in DNA barcoding can 

reliably and successfully distinguish between species of the taxon of choice (Meyer & Paulay 

2005; Jinbo et al. 2011; Čandek & Kuntner 2015). When the intraspecific and interspecific genetic 

distances overlap, the DNA barcode gap is absent and taxa cannot be reliably sorted into species 
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based on the genetic data (Figure 1B) (Meyer & Paulay 2005; Jinbo et al. 2011; Puillandre et al. 

2012; Chapple & Ritchie 2013).  

 
 

Figure 1.1: The DNA barcode gap, Figure adapted from Meyer and Paulay (2005). The 

distribution of intraspecific variation is shown in purple and the interspecific divergence is shown 

in green. 

When the barcode gap is present (Figure 1 A) there is a distinct difference between 

intraspecific variation and interspecific divergence. When there is no DNA barcode gap (Figure 1 

B) the intraspecific variance and interspecific genetic distance are continuous. Taxa with sequence 

divergence values which fall within the overlap cannot be sorted into species with confidence.  

There are many reasons as to why there may be a lack of the DNA barcode gap in a given 

dataset. First, there might be elevated levels of genetic diversity below the species level (Jinbo et 

al. 2011). Second, the extent of the geographic sampling region could affect rates of intraspecific 

divergence (Jinbo et al. 2011; Chapple & Ritchie 2013). Third, the presence of closely related 
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species and/or poorly understood taxonomy of selected groups (i.e. cryptic species) (Wiemers & 

Fiedler 2007; Jinbo et al. 2011; Chapple & Ritchie 2013). 

Despite the importance of the DNA barcode gap in the accuracy of DNA barcoding, few 

studies have tested for the presence of the gap. The DNA barcode gap analysis that has previously 

been carried out on birds (Hebert et al. 2004) and arthropods (Barrett & Hebert 2005) showed the 

presence of a distinct barcode gap. The existence of this gap, however, has been put into question 

when the analysis was carried out on groups such as gastropods (Meyer & Paulay 2005) and 

Diptera (Meier et al. 2006), where there was no barcode gap present. Understanding what factors 

affect the success of barcoding is a vital component of any DNA barcoding study. 

1.3 Importance of applying DNA barcoding to arthropods 

The phylum Arthropoda includes insects, arachnids, myriapods, and crustaceans. Arthropods 

are regarded as the most species-rich animal phylum in most terrestrial ecosystems (Bolger et al. 

2000; Wiemers & Fiedler 2007). This phylum is very useful to study the effects of climate change 

and urbanization, because of their great abundance, diversity, functional importance and because 

they can be found in a wide range of diverse ecosystems (Kremen et al. 1993; Bolger et al. 2000; 

Andersen et al. 2004; Buczkowski & Richmond 2012; Jones & Leather 2012).  

Arthropods play important functional roles in ecosystem processes and as significant 

biological indicators of ecological change due to their short life cycles and sensitivity to habitat 

disturbances (Kremen et al. 1993; Bolger et al. 2000; Andersen et al. 2004; Buczkowski & 

Richmond 2012; Jones & Leather 2012). They are therefore able to respond to environmental 

changes more rapidly than vertebrates (Kremen et al. 1993). Despite the increasing issues 

surrounding the global biodiversity crisis and conservation planning, very little attention has been 

given to the creation of biodiversity inventories and monitoring of terrestrial arthropods in 

ecologically sensitive parts of the world (Kremen et al. 1993; Andersen et al. 2004; Smith et al. 

2005).  

To create biodiversity inventories for arthropods, routine taxonomic identification needs to be 

carried out. Two of the major problems surrounding the creation of biodiversity inventories for 

arthropods includes the species identification of this phylum being extremely time-consuming and 

the lack of taxonomists available to carry out routine taxonomic identifications for most groups 
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(Wiemers & Fiedler 2007). The percentage of undescribed species within arthropods is much 

higher than that of vertebrates, resulting in an increased need for improved identification tools to 

identify a large range of arthropod samples successfully and reliably (Wiemers & Fiedler 2007; 

Virgilio et al. 2010). 

Since the beginning of the DNA barcoding era, there have been many studies that have been 

carried out on selected arthropod taxa. These studies include Diptera (Meier et al. 2006), 

Lepidoptera (Wiemers & Fiedler 2007; Sourakov & Zakharov 2011), Coleoptera (Greenstone et 

al. 2005), Araneae (Čandek & Kuntner 2015), and Formicidae (Smith et al. 2013). DNA barcoding 

is crucial for the identification of certain arthropods at different developmental stages (e.g. eggs, 

larvae, nymphs, or pupae) which are difficult or impossible to identify using traditional taxonomy 

(Virgilio et al. 2010). For example, DNA barcoding has been proven to be successful when trying 

to identify eggs and larvae of closely related carabids and spiders which are natural predators that 

are important for the biological control of agricultural pests (Greenstone et al. 2005; Virgilio et al. 

2010). Furthermore, using DNA barcoding, researchers from the University of Florida and the 

University of Guelph were able to clarify taxonomic relationships within the Caribbean butterfly 

genus Calisto (Sourakov & Zakharov 2011). They described this genus as “often highly cryptic 

and confusing”. These researchers sequenced barcodes linked to 31 separate taxa and their efforts 

resulted in a taxonomic revision of the genus now comprising of 34 species and 17 subspecies 

(Sourakov & Zakharov 2011).  

1.3.1 Hemiptera 

Hemiptera, known as true bugs, are one of the largest, most diverse groups of hemimetabolous 

insects (i.e. insects undergoing incomplete metamorphosis in which the young do not resemble the 

adult) (Park et al. 2011; Raupach et al. 2014). Currently, there are more than 42 000 described 

species worldwide, consisting of 5800 genera and 140 families (Henry 2009; Park et al. 2011; 

Raupach et al. 2014). The Hemiptera order is divided into three suborders: Hydrocorizae (aquatic 

bugs); Amphibicorizae (semi-aquatic or shore-inhabiting bugs) and Geocorizae (terrestrial bugs) 

(Wheeler 2001). This order is found worldwide in a variety of ecosystems and habitats, with 

exception of the deep sea and polar regions (Raupach et al. 2014).  
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Hemiptera are of high ecological and economic importance making their identification highly 

desirable (Henry 2009; Park et al. 2011; Raupach et al. 2014). They are known to play an important 

role in agriculture, they cause direct damage to plants by herbivory, they are indirectly involved in 

the transportation of diseases and are used as biological control agents (Wheeler 2001; Park et al. 

2011; Raupach et al. 2014). However, the vast majority of Hemiptera are harmless insects and 

some of the predatory forms can be regarded as beneficial when they habitually prey on insect 

pests (Raupach et al. 2014). 

Given the lack of Hemiptera taxonomic expertise in South Africa and the general difficulty in 

identifying species, especially throughout their various nymphal stages, traditional identification 

of this group has proven to be very difficult and time-consuming (Raupach et al. 2014). To 

alleviate this difficulty, DNA barcoding has been proposed as a complementary tool to 

morphological-based methods for the identification of Hemiptera (Raupach et al. 2014). 

DNA barcoding of the South African Hemiptera will not only improve the representation of 

South African taxa in the BOLD, it will also allow for the assessment of the local biodiversity 

within the study sites (Valentini et al. 2008). In general, most of the biodiversity surveys 

(particularly DNA barcode studies) have focused on rural areas and protected areas; very rarely do 

they survey the biodiversity and species richness within an urban context (Helden & Leather 2004). 

The richness of diverse groups of species belonging to Hemiptera has not been previously surveyed 

(nature reserves, parks, and undeveloped land) in South Africa. Biodiversity data at a regional 

scale is therefore needed for accurate and appropriate conservation planning.  

1.4 Aim of study 

There are two main aims of this study:  

1. To construct a preliminary reference library for Hemiptera collected from the eThekwini 

region, South Africa. Here I will assess the utility of the DNA barcode marker (COI) to 

differentiate among morphospecies of Hemiptera. One key consideration is the existence of the 

DNA barcode gap. If there is no significant differentiation between inter- and intraspecific genetic 

diversity then this will limit specimen identification success using DNA barcoding. This project 

will contribute towards the multi-taxon Urban Barcode project currently being run by the Willows-

Munro research group at UKZN and through consultation with taxonomic experts the data from 
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the project will be added to the global Hemiptera DNA reference library available through Barcode 

of life database (BOLD). 

2. To test the suitability of Hemiptera to monitor the success of ecological habitat restoration. 

The Buffelsdraai Landfill Site Community Reforestation Project will be examined as a case study. 

This portion of the study will involve the establishment of a reference library of Hemiptera 

collected from the Buffelsdraai site. Examining the data will allow for a suite of indicator species 

with high habitat specificity to be selected. This project will also aim to assess changes in species 

richness and diversity in reforested sites of different ages ranging from the years 2010 to 2015. 
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Chapter Two 

Construction of a preliminary reference library for Hemiptera collected from 
the eThekwini region and surrounding areas and the assessment of DNA 

barcoding using the COI marker 

Abstract 

Hemiptera are useful bio-indicators and constitute an important component of South African 

insect fauna. This order has been used in the biological control of invasive plants and plays an 

important role in agriculture. Identification of Hemiptera using traditional taxonomy can be 

challenging. Challenges include the separation of cryptic species and the delimitation of 

individuals from different developmental stages. DNA barcoding is a molecular-based system 

designed to provide a rapid, accurate and automatable method for species identification. A short, 

standardized gene region, the mitochondrial cytochrome c subunit 1 (COI), is used as a species 

tag. This study presents a preliminary DNA barcode reference library for Hemiptera collected from 

the eThekwini region and surrounding areas (Durban, KwaZulu-Natal, South Africa). This region 

is situated within the Maputaland-Pondoland-Albany biodiversity hotspot. In total, a reference 

library containing over 1456 mitochondrial COI barcodes representing a total of at least 357 

barcode clusters collected from 18 localities were analyzed. This study tested for the presence of 

the “DNA barcode gap”. This is the gap between the intraspecific and interspecific genetic 

distances – the larger the gap the more accurate species delimitation. This study highlights the 

utility of DNA barcoding and assesses the biodiversity within the eThekwini region for suitable 

conservation and management of this region. 
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2.1 Introduction 

2.1.1 Biodiversity hotspots in South Africa and the eThekwini region 

Rapid growth in the human population has had a negative impact on the natural ecosystem 

and has resulted in a substantial depletion of biodiversity (Grimm et al. 2008; Moorhead & Philpott 

2013). Therefore, there is a crucial need to act, protect and conserve the biodiversity that is left on 

our planet during this global biodiversity crisis (Brooks et al. 2006; McKinney 2008). Questions 

have been raised as to which geographic regions are a priority to protect and maintain biodiversity 

(Reid 1998; Myers et al. 2000). A successful method to select important geographic regions is to 

identify biodiversity ‘hotspots’ (Myers et al. 2000). Biodiversity hotspots are regions, which are 

rich in species, contain many endemic and threatened species and are experiencing a grave loss of 

natural habitat (Reid 1998; Myers et al. 2000). 

South Africa, located on the southernmost tip of the African continent, is recognized by its 

biodiversity hotspots of global importance (Rouget et al. 2004). These include the Maputaland-

Pondoland-Albany region, the Cape Floristic region and the Succulent Karoo (Rouget et al. 2004; 

Zachos & Habel 2011). In South Africa, approximately 65 500 animal species have been described, 

with over 44 000 of these being insects (Scholtz 1999; Hamer 2013; Silva & Willows-Munro 

2016). However, this represents less than half of the actual fauna richness in South Africa (Hamer 

2013). 

This study focuses on the globally important Maputaland-Pondoland-Albany biodiversity 

hotspot, with interest being placed on the eThekwini municipal region and surrounding areas. 

EThekwini is a metropolitan municipality situated in KwaZulu-Natal, South Africa. Although the 

municipality is situated within the globally-important Maputaland-Pondoland-Albany biodiversity 

hotspot, the region is under increasing pressure from urbanization (Croucamp 2009). The increase 

in urbanization is due to the city’s rapid expansion to accommodate its increasing human 

population (> 3.5 million) (Govender 2014). Not only is it threatened by urbanization it is also 

vulnerable to the effects of the global climate change (Govender 2014). This urban area is highly 

developed with a 55% loss of natural habitat and is a critically endangered ecosystem with limited 

knowledge of the biodiversity present within the region.  
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To conserve the biodiversity in the city, the Durban Metropolitan Open Space System 

(D’MOSS) was developed to assist in town planning. D’MOSS is a network of green open spaces 

linking together areas of high biodiversity value such as nature reserves and undeveloped pieces 

of privately and municipality-managed land (Willows-Munro 2013; Govender 2014). The 

D’MOSS network consists of 74 500 ha of open spaces and is composed of a variety of habitat 

types, however, only 10% of the D’MOSS area is formally protected (Govender 2014). There are 

more than 2200 described plant species, 82 terrestrial mammal species, 520 bird species, 69 reptile 

species, 37 frog species and 25 endemic invertebrate groups found in the D’MOSS region 

(Govender 2014). This only represents a fraction of the biodiversity found within the region. 

D’MOSS was created to generate much needed knowledge of the biodiversity and to assist 

managers in the municipality in the decision making of prioritizing regions for biodiversity and 

conservation.  

2.1.2 Species inventories in South Africa 

While South Africa contains major globally important hotspots, our country is not exempt 

from concerns over the conservation of biodiversity. The rapid expansion of urbanization within 

the eThekwini region highlights the importance of creating species inventories for the biodiversity 

hotspots within South Africa. The creation of species inventories helps to protect and conserve the 

biodiversity that is being placed under increasing anthropogenic pressure (Savard et al. 2000; 

Alroy 2002; Hebert et al. 2003; Smith et al. 2005). Knowledge of what species exist within South 

Africa is important for biodiversity surveillance, the detection of invasive taxa and potentially 

uncovering new or cryptic species (Hebert et al. 2003; Jinbo et al. 2011; Krishna Krishnamurthy 

& Francis 2012). To conserve this biodiversity, we need to take note of several factors such as the 

distribution and habitat association of species, species richness and diversity in each area, and what 

endemic species occur within each area (Krishna Krishnamurthy & Francis 2012). 

When trying to create a comprehensive species inventory difficulty is experienced in hyper-

diverse groups such as terrestrial arthropods (Alroy 2002). The reason for this is the presence of 

closely related species, cryptic species, and individuals at different developmental stages. In 

creating these species inventories, South Africa has made very slow progress in describing all the 

species because we do not have the taxonomic capacity due to a shortage of expert taxonomists 

(Krishna Krishnamurthy & Francis 2012). However, attempting to catalogue and monitor 
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biodiversity even at a small regional scale is a daunting task (Krishna Krishnamurthy & Francis 

2012). Therefore, molecular techniques have been proposed to complement traditional taxonomy, 

one of the techniques gaining popularity is that of DNA barcoding (Hebert et al. 2003; Jinbo et al. 

2011). 

DNA barcoding can be used for biodiversity assessments at both regional and global scales, 

as well as enabling the discovery of new species by providing a rapid, accurate and automatable 

way of species identification and discovery (Hebert et al. 2003; Jinbo et al. 2011). The short, 

standardized gene region, the mitochondrial cytochrome c subunit 1 (COI), is used as a species tag 

for many animal taxa. DNA barcoding can also be used to create species inventories by enabling 

the creation of reference libraries in which molecular data is coupled with reliable morphological 

taxonomic knowledge (Cesari et al. 2013). A reliable reference library contains reference 

sequences of voucher specimens that have previously been verified by expert taxonomists (Cesari 

et al. 2013). DNA barcoding can be considered as a complementary tool to traditional taxonomy 

for the creation of reference libraries for key taxa (Cesari et al. 2013).  

This study will focus on the biodiversity present within the eThekwini region. Creating a 

reference library of the biodiversity within this region is important to enable the assessment of 

biodiversity and assist with proper town planning.  This study will focus on creating a reference 

library of Hemiptera for the different open spaces incorporated into D’MOSS. If the data generated 

by this study is coupled with climatic data generated by the municipality, this genetic data has a 

potential to provide a valuable environmental monitoring tool to understand the impact of 

urbanization on the biodiversity within the eThekwini region (Willows-Munro 2013). Hemiptera 

was selected as the study species as they are found within a wide range of ecosystems and can be 

used as environmental indicators. Hemiptera are useful biological indicators and constitute an 

important component of South African insect fauna. Currently, there are more than 42 000 species 

of Hemiptera described worldwide (Raupach et al. 2014). Hemiptera are well represented in the 

BOLD database, however, a very few of the represented species come from South Africa. 

Currently there is a total of 267 511 barcode records present on BOLD, however, only 180 521 

records have been published.  These records form 13862 barcode index number (BINs), with 

specimens from 145 countries deposited by 133 institutions. Of these published records, only 72 

506 barcodes have species names, representing 6 915 species. Moreover, only 3 414 published 
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records were collected from South Africa. Identification of Hemiptera using traditional 

morphology-based identification is time consuming and in most cases, technically difficult. For 

example, the family Miridae is challenging to taxonomists as it is one of the most species rich 

families of Hemiptera (Coeur d’acier et al. 2014; Raupach et al. 2014). 

2.1.3 DNA barcoding as an identification tool 

DNA barcoding has been incorporated into studies which aim to understand and assess aspects 

that are related to ecology, evolution, conservation, and biodiversity (Hebert et al. 2003; Krishna 

Krishnamurthy & Francis 2012; Raupach et al. 2014). The success of species delimitations through 

barcoding is based on the taxonomic coverage and accuracy of the DNA barcoding reference 

library available. Nearly all organisms carry a version of the COI gene in their mitochondrion 

(Hebert et al. 2003; Jinbo et al. 2011). In animals, this gene is used as a standard identification 

marker which allows unknown individuals to be assigned to species and enables the discovery of 

potentially new species (Hebert et al. 2003; Tavares & Baker 2008; Jinbo et al. 2011; Krishna 

Krishnamurthy & Francis 2012). DNA barcoding has, however, been criticized by some members 

of the scientific community (Rubinoff et al. 2006; Tavares & Baker 2008; Krishna Krishnamurthy 

& Francis 2012; Raupach et al. 2014). Critics suggest that taxonomic uncertainty, interspecific 

hybridization, phylogeographic scales of sampling and insufficient intraspecific sampling in 

favour of greater taxonomic coverage decreases the efficacy of DNA barcoding (Tavares & Baker 

2008; Baker et al. 2009; Bergsten et al. 2012; Krishna Krishnamurthy & Francis 2012; Chapple & 

Ritchie 2013). A major limiting factor of DNA barcoding is the scale of sampling, which can cause 

intraspecific distances to vary greatly (Bergsten et al. 2012; Čandek & Kuntner 2015). Genetic 

divergence of individuals of the same species can be higher than anticipated because of different 

geographic locations and below species-level phylogeographic structuring (Bergsten et al. 2012; 

Čandek & Kuntner 2015).  

In addition to the above-mentioned limitations, critics of DNA barcoding claim that the use 

of a single gene to carry out routine species identification has its own limitations (Rubinoff et al. 

2006; Tavares & Baker 2008; Baker et al. 2009; Krishna Krishnamurthy & Francis 2012). The 

suggested limitation regarding DNA barcoding is how accurately this tool can identify novel 

species and its ability to assign them within a wider taxonomic context (Rubinoff et al. 2006; 

Tavares & Baker 2008; Baker et al. 2009; Krishna Krishnamurthy & Francis 2012). It is suggested 



 

23 
 

that the COI mitochondrial gene as a single identification marker for species identification is not 

adequate due to the following suggested limitations; heteroplasmy, compounding evolutionary 

processes, reduced effective population size and introgression, maternal inheritance, inconsistent 

mutation, and recombination (Rubinoff et al. 2006; Tavares & Baker 2008; Krishna 

Krishnamurthy & Francis 2012).  

2.1.4 The DNA barcode gap as a measure of identification accuracy 

One key consideration in the field of DNA barcoding is the existence of the DNA “barcode 

gap”. The “barcode gap” can be defined as the difference between interspecific and intraspecific 

genetic distances within a group of organisms (Barrett & Hebert 2005; Meyer & Paulay 2005). 

DNA barcoding relies on the assumption that intraspecific COI variation is lower than the 

interspecific variability (Barrett & Hebert 2005; Meyer & Paulay 2005; Wiemers & Fiedler 2007). 

The separation between intraspecific and interspecific species divergence is known as the DNA 

barcode gap (Barrett & Hebert 2005; Meyer & Paulay 2005; Wiemers & Fiedler 2007). If there is 

no significant differentiation or an overlap between intraspecific and interspecific genetic 

divergence then this will limit species identification success using DNA barcoding and the COI  

gene as a single identification marker (Meyer & Paulay 2005; Wiemers & Fiedler 2007). However, 

very few studies using barcoding actually check for the presence of the DNA barcode gap. Previous 

studies on birds and arthropods have supported the presence of the DNA barcode gap (Hebert et 

al. 2004; Barrett & Hebert 2005; Hajibabaei et al. 2007), while other studies have not (Meyer & 

Paulay 2005; Meier et al. 2006; Wiemers & Fiedler 2007).  

The DNA barcode gap analysis relies on the correct estimation of interspecific and 

intraspecific genetic distances. These genetic distances are generated through the use of a 

substitution model to generate pairwise distances between species and among individuals 

belonging to the same species. Most DNA barcoding studies carry out the barcode gap analysis 

using a single, relatively simple, model of nucleotide substitution known as the Kimura-2-

parameter (K2P) model (Kimura 1980). The original species identification method proposed by 

Hebert et al. (2003) introduced the construction of neighbor-joining (NJ) trees based on K2P 

divergence. It was suggested that because most barcoding datasets consist of closely related 

species, the K2P model is sufficient to calculate genetic distances (Hebert et al. 2003; Barley & 

Thomson 2016). This assumption could be problematic given that the K2P model is rarely the 
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most appropriate model for the barcode data examined (Srivathsan and Meier 2012). The use of 

an incorrect model can result in the estimation of inaccurate genetic distances, causing inaccurate 

results to be obtained.  Therefore, model selection procedures should be carried out to select a 

model that best represents mutational processes of the data, while minimising the loss of preditive 

ability through overparameterisation (Sullivan & Joyce 2005). 

2.1.5 Aims of study 

Despite the promise of DNA barcoding, only a handful of studies throughout the world have 

included DNA barcoding of Hemiptera (Virgilio et al. 2010; Park et al. 2011; Coeur d’acier et al. 

2014; Raupach et al. 2014; Wang et al. 2015). This study aims to test the utility of DNA barcoding 

in South African Hemiptera using the mitochondrial COI gene to identify species and create a 

barcode reference library of Hemiptera collected from an important biodiversity hotspot threatened 

by urbanization (eThekwini and surrounding regions). This study has three key objectives. First, I 

will test for correlation between the number of morphospecies and genetic clusters of Hemiptera 

(which are also known Barcode Index Numbers; BINs) collected from each of the selected 

localities in this study. Second, to test the success of using DNA barcoding in South African 

Hemiptera, I will test for the presence of the DNA barcoding gap in the eThekwini Hemiptera data, 

in addition to this objective, I will examine the impact of different nucleotide substitution models 

on the position and presence of the DNA barcoding gap. Finally, using phylogenetic methods I 

will test if the mitochondrial COI marker can provide resolution for associations above the species 

level (i.e. among genera and families) in Hemiptera. Although this study will only include taxa 

collected from a small regional scale, the conclusion drawn will be applicable to future studies of 

Hemiptera in South Africa. 

2.2 Materials and methods 

2.2.1 Study area 

The eThekwini municipal area (the city of Durban and surrounding areas) covers a land area 

of 2297 km2 which makes up 1.4% of KwaZulu-Natal (Govender 2014). South Africa contains a 

total of nine globally important terrestrial biomes, the eThekwini region contains four of these 

biomes, namely: thicket, savanna, forest and grassland (Govender 2014). The region consists of 

eight broad vegetation types, namely: Eastern Valley Bushveld, Mangroves, Ngongoni Veld, 
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Northern Coastal Forest, Scarp Forest, KwaZulu-Natal Coastal Belt, KwaZulu-Natal Hinterland 

Thornveld and the KwaZulu-Natal Sandstone Sourveld. In this study, we will focus on the 

KwaZulu-Natal Sandstone Sourveld region (Figure 2.1). Most of the sites selected for this study 

took place within the eThekwini municipal region, however, some sites were selected around the 

eThekwini region.  

 

Figure 2.1: Map illustrating the 18 sampling localities in and around the eThekwini region 

(KwaZulu-Natal, South Africa). The extent of the eThekwini municipality area is outlined in red. 
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2.2.2 Sampling of specimens  

All analyzed Hemiptera for this study were collected between 2011 and 2015 using a 

combination of sweep netting, tree beating, and active searching. A total of 1726 specimens were 

collected from 18 open spaces within and around the eThekwini municipality (Figure 2.1). Many 

of these localities form part of the D’MOSS system. These open spaces include protected 

areas/nature reserves (Chase Valley Nature Reserve, Bisley Nature Reserve Springside Nature 

Reserve, Iphithi Nature Reserve, Giba Gorge Nature Reserve, New Germany Nature Reserve, 

Palmiet Nature Reserve, Msinsi Nature Reserve, North Park Nature Reserve, Kenneth Stainbank 

Nature Reserve, Paradise Valley, Vernon Crookes Nature Reserve and Hazelmere Dam), privately 

managed areas (University of KwaZulu-Natal (Pietermaritzburg campus) and Drummond) and 

undeveloped areas (Hamilton Grassland, Bartlett Estate Grassland and High Meadows) within the 

sampling region. At each open space, Hemiptera was collected from all vegetation types present. 

All specimens were stored in ethanol (100%) at -20 degrees Celsius.  

2.2.3 Sorting of specimens into morphospecies 

Specimens were sorted into the lowest taxonomic level possible using morphological keys 

available in the taxonomic literature (Schuh & Slater 1995; Maw et al. 2000; Cassis et al. 2002). 

Morphological features such as body size, shape, colour patterns and wing structure were taken 

into consideration (Shen et al. 2013). Where possible, five individuals of each morphospecies per 

sampling locality were selected for DNA barcoding. Multiple individuals of each morphospecies 

were included to incorporate spatially-correlated variation within species (Bergsten et al. 2012). 

Each specimen was given a unique code to assist with identification and data tracking. Each code 

is made up four characteristics, the location from where the specimen was collected, the type of 

vegetation present at the location, and a unique specimen number.  Each specimen selected for 

DNA analysis was photographed using a USB Digital Microscope 2.0 - Moticam 2300. Specimens 

were deposited at the University of KwaZulu-Natal (Pietermaritzburg campus). This repository is 

recognized by the Barcode of Life project as an official storage facility for specimens that have 

been barcoded. Successful DNA barcodes in this study will be uploaded to BOLD. 
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2.2.4 Genomic DNA extractions and Polymerase Chain Reaction (PCR) amplification  

A single leg from ethanol-fixed specimens was removed and the total genomic DNA was 

extracted from 536 specimens using the ZR Tissue and Insect MicroPrepTM kit (ZYMO research), 

following the manufacturer’s instructions. The kit uses bashing beads to lyse the tissue and the 

extracted DNA was purified using the fast-spin column. The concentrations and quality of the 

extracted genomic DNA were quantified using a NanoDrop Spectrophotometer 2000 (Thermo 

Scientific).   

The mitochondrial COI gene was amplified using the universal primers 

LCO1490 (5′- GGTCAACAAATCATAAAGATATTGG-3′) and 

HCO2198 (5′- TAAACTTCAGGGTGACCAAAAAATCA-3′) originally developed by Folmer et al. 

(1994). The PCRs were carried out using a 25µl reaction volume made up of: genomic DNA (40.5 

ng/µl, on average), DreamTaq DNA Polymerase (5µ/1µl; Fermentas, South Africa), DreamTaq 

buffer (10X, containing MgCl2, 20mM; Fermentas, South Africa), dNTP mix (10µM), forward and 

reverse primer (10µM each), sterile nuclease free water, additional MgCl2 (25µM) and Bovine 

Serum Alumin (BSA) (1mg.m-1) was added. Negative controls were carried out to test for 

contamination of reagents. Thermocycler amplification was carried out using the following 

conditions: initial denaturation at 95 ºC for 3 minutes, 10 cycles (denaturation at 95ºC for 30 

seconds, annealing at 42ºC for 45 seconds, extension at 72º for 1 minute 25 seconds), 25 cycles 

(denaturation at 95ºC for 30 seconds, annealing at 45ºC for 45 seconds, extension at 72º for 1 

minute 25 seconds) and final extension at 72ºC for 10 minutes.  

The PCR products were visualized on a 0.8% (w/v) TBE agarose gel stained with Ethidium 

bromide (0.2mg). A 100-bp molecular weight marker (Solis Biodyne) was used to estimate the 

size of the PCR products. The expected product size was 658-bp.  Agarose gels were viewed under 

ultra violet light using the MiniBis Pro gel capture instrument (Bio-Imagining System) and the 

PCR products were sized using a standard curve. Only products of expected size (658-bp) were 

sent for sequencing. 

2.2.5 Sequencing and data processing  

Successfully amplified PCR products were sent to the Central Analytical Facility at 

Stellenbosch University, South Africa for sequencing. Both forward and reverse sequences were 
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generated. The electropherogram of each PCR amplicon was examined for quality using the 

BioEdit 7.0.9.0 sequence alignment editor (Hall 1999). Barcode compliant sequences (>500-bp of 

length, no stop codons, misidentifications, or contamination) generated in the present study 

(n =517) were aligned together with barcode complaint sequence data for eThekwini Hemiptera 

downloaded from BOLD (n = 939) using ClustalX 2.1 (Larkin et al. 2007). Summary statistics 

such as the number of variable characters (V), number of parsimony informative characters (Pi) 

and the average nucleotide compositions were estimated for the data using MEGA 6.0 (Tamura et 

al. 2007). 

2.2.6 Phylogenetic tree construction and database construction 

Using the COI sequence data for the eThekwini Hemiptera project available on BOLD, a 

neighbor-joining (NJ) tree was constructed using the K2P substitution model. This tree was created 

using the sequence analysis function within the BOLD interface (Ratnasingham & Hebert 2007). 

Specimens were assigned to Barcode Index Numbers (BINs) or barcode clusters on the tree using 

the clustering algorithm implemented within BOLD. These BINs represent operational taxonomic 

units (OTUs) which are synonymous with species (Blaxter et al. 2005). The use of BINs is useful 

when taxonomic information is lacking as the clustering algorithm used by BOLD allows 

specimens to be assigned to supposed BINs using the available sequence data (Ratnasingham & 

Hebert 2007). MEGA 6.0 was then used to construct a NJ tree using both the COI sequence data 

downloaded from BOLD and the COI sequence data generated in the present study. The tree was 

constructed using the K2P substitution model which is the standard model used on BOLD, (Hebert 

et al. 2004). This model was selected so that both the NJ trees constructed in BOLD and MEGA 

were comparable. Barcode Index Numbers were then assigned to barcode clusters on the newly 

created NJ tree.  

Each COI sequence on the NJ tree was blasted against the global BOLD reference library. 

Sequence similarity to the top search hit was recorded. Taxa with similarity values greater than a 

95% were considered already present in BOLD. Conditional genus-level or family-level 

identification was allocated to taxa with sequence similarity values less than 95%. 
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2.2.7 Estimating species diversity and abundance 

A database of the Hemiptera specimens was constructed using Microsoft Office Excel 2010. 

The database served as a personal reference library and included the following information for 

each specimen: BINs, the unique specimen name, morphospecies allocation, taxonomy (order, 

family and where possible, genus and species name), sampling locality, vegetation type and the 

sequence similarity score from the top hit in BOLD. This information was then used to compare 

the number of morphospecies and BINs at the different sampling localities. A chi-squared test was 

performed to check for any significant difference between the number of morphospecies and 

number of BINs recorded for each of the sampling localities. 

Species diversity analyses were carried out for Hemiptera at each of the sampling localities 

using the program Past 3.44 (Hammer et al. 2001) on the dataset where individuals were assigned 

to BINs. To link sample heterogeneity and estimates of species richness and abundance, both 

within and between each locality, species diversity was calculated using four most widely accepted 

diversity indices, namely, Margalef’s diversity index (d) (Margalef 1958), Fisher’s α (α) (Fisher 

et al. 1943), Shannons diversity index (H’) (Shannon & Weaver 1963) and Simpson’s diversity 

index (D) (Simpson 1949). Margalef’s diversity index was calculated using the total number of 

species and the total number of individuals present in each sampling area to highlight the most 

species-rich sites (Margalef 1958). Fisher α diversity index is a parametric index of diversity that 

assumes the abundance of species follows the log series of distribution, this index describes how 

individuals sampled are divided among species in each sampling site (Fisher et al. 1943). Shannons 

index takes into account the number of individuals as well as the number taxa at each sampling 

site (Shannon & Weaver 1963). Simpson’s index measures the evenness of a community from 0 

to 1 at in each sampling site (Simpson 1949).  

2.2.8 DNA Barcode gap analysis 

Intraspecific and interspecific genetic distances were calculated using two datasets, namely, 

(i) individuals assigned to BINs (number of BINs = 357) and (ii) individuals assigned to 

morphospecies (number of morphospecies = 256). The best-fit nucleotide substitution models were 

selected using the program jModelTest 2 (Darriba et al. 2012) along with the Akaike Information 

Criterion (AIC) (Akaike 1974). In both cases, the model of best-fit for the data was the general 
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time reversible model (GTR) with both gamma distribution (G) and proportion of invariable sites 

(I). To test what effect model choice had on barcode gap estimation, both the K2P nucleotide 

substitution model and the GTR + I + G nucleotide substitution model were used to generate 

pairwise genetic distance matrices using MEGA and RAxML 8.0 (Stamatakis 2014).  

The intraspecific and interspecific distances were plotted using Microsoft Excel 2010. The 

maximum intraspecific distance was subtracted from the minimum interspecific distance to check 

for the presence or absence of a barcoding gap (Meier et al. 2006). 

Further statistical analyses for the DNA barcode gap was carried out in the R statistical 

software (http://www.r-project.org). The Jeffries-Matusita Distance (J-M) statistic was used to test 

if the intraspecific and interspecific genetic distances are separable.  The J-M distance is widely 

used as a reparability criterion and is used to assess the potential of band pairs to discriminate 

between two different regional classes (Trigg & Flasse 2001). The J-M separability criterion 

considers the distance between class means and the distribution of values from the mean (Dabboor 

et al. 2014). The J-M distance is asymptotic to 1.414 and as such, a value of 1.414 or greater 

suggests that two regional classes are statistically separable (Trigg & Flasse 2001).   

2.2.9 Phylogenetic Analysis 

In addition to the construction of a NJ tree, two additional phylogenetic approaches were taken 

to determine if the COI marker can provide resolution above the species level. Maximum 

likelihood and Bayesian inference analyses were performed on a truncated dataset containing only 

one representative for each BIN cluster. In this case, a dataset including 357 sequences was 

analyzed. The maximum likelihood analysis and Bayesian inference are both model-based 

approaches that can implement more sophisticated substitution models, therefore the GTR + I + G 

was used in both these analyses.  

RAxML 8.0 was used to conduct the maximum likelihood analysis. The tree search method 

was ML + thorough bootstrap implementing 1000 bootstrap replicates. This analysis generated 

both the most likely tree and a bootstrap tree file, which contained the 1000 bootstrap trees. A 

consensus tree was created from the bootstrap file using Phylip 3.69 (Felsenstein 2005). 

Thereafter, trees were viewed and modified using the program Figtree 1.3.1 (Rambaut 2009). 

http://www.r-project.org/
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MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003) was used to conduct the Bayesian inference. 

This analysis was performed using two independent runs each consisting of four parallel chains. 

The MCMC chains were run for 30 million generations with trees sampled every 5000th generation. 

Once each run was completed, convergence of the MCM chains from each run was assessed in 

Tracer 1.5 (Rambaut & Drummond 2007). Convergence was obtained when effective sampling 

size (ESS) values were all above 200. The first 6 million trees were removed as burn-in. 

The resulting trees were used to create a 50% majority rule consensus tree using Phylip 3.69. 

Branch support values were provided as posterior probabilities (Bayesian analysis) and bootstrap 

values (maximum likelihood analysis). The resulting maximum likelihood and Bayesian 

topologies were compared by analyzing significantly supported nodes (bootstrap ≥ 75% and 

posterior probabilities ≥ 0.95). Since the maximum likelihood and Bayesian trees agreed on one 

topology, I combined the posterior probabilities values with the bootstrap values and annotated 

them onto the most likely tree from the maximum likelihood analysis.  

2.3 Results 

2.3.1 Data description 

In the present study, DNA was extracted from 536 specimens. The COI gene region was 

successfully amplified and sequenced from 517 specimens. These 517 barcodes met the barcode-

compliance criteria stipulated by the Consortium for DNA Barcoding (>500-bp of length, no stop 

codons, misidentifications, or contamination). These sequences were added to the larger 

Hemiptera data already available on BOLD from the eThekwini region (939 specimens). The 

sequences were easily aligned as there were no insertions, deletions, or stop codons. The final 

alignment was 615 base pairs in length (465 variable sites of which 426 were parsimony 

informative). The Hemiptera database used in this study consisted of 1456 specimens, which were 

clustered into 357 BINs and 256 morphospecies. The average base composition for the full dataset 

was 35.8% thymine (T), 17.6% cytosine (C), 31.4% adenine (A) and 15.2% guanine (G). The 

nucleotide compositions of all the sequences were heavily biased toward A and T nucleotides. This 

is not unusual as insects are known to have an AT-rich nucleotide composition in COI sequences 

(Raupach et al, 2014).  
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2.3.2 Species richness and diversity 

The number of specimens (n = 1456), morphospecies (n = 256) and BINs (n = 357) per 

sampling locality were plotted (Figure 2.2) and used to estimate the species richness and diversity 

within the eThekwini region. Generally, the number of BINs and morphospecies observed from 

each locality were similar. However, a chi-square test of coherence between the number of BINs 

and morphospecies demonstrated a significant difference in Hamilton grassland, Drummond, 

Springside Nature Reserve, Palmiet Nature Reserve, and North Park Nature Reserve (p < 0.05). 

The variation in the number of morphospecies and BINs recorded from these sites could suggest 

cryptic speciation. For example, Palmiet has more BINs that morphospecies, which suggests that 

there are a larger number of distinct genetic lineages in comparison to the number of 

morphospecies. In contrast, it is observed that there is an over estimation of species based on 

morphology when compared to BINs in Paradise Valley, which suggests the presence of species 

which are very morphologically variable or specimens which are at different developmental stages 

at this locality.  
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Figure 2.2: Bar graph representing the distribution of specimens, morphospecies and barcode 

clusters (BINs) amongst the different sampling localities included in the present study. Localities 

with a significant difference between the number of BINs and the number of morphospecies are 

highlighted by a red dot.  

 

Species richness, abundance and diversity were calculated and used to assess the different 

localities (Table 2.1).  The highest species richness value was observed at Palmiet Nature Reserve 

(S = 79), followed by Springside Nature Reserve (S = 70) and Drummond (S = 55). The Margalef’s 

index values obtained showed that species diversity among sampling sites varied between d = 3.46 

and 14.39 and the Fisher α diversity index values obtained ranged between α = 8.16 and α = 69.29. 

The highest species diversity and α values were observed in Springside Nature Reserve (d = 14.39, 

α = 69.29), Palmiet Nature Reserve (d = 14.34, α = 47.69), and Drummond (d = 11.56, α = 45.44). 

In contrast, the lowest species diversity was observed in Paradise Valley (d = 3.46, α = 8.46) and 
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Hazelmere Dam (d = 4.13, α = 9.39). These trends were further supported by the Shannons index 

(H’) and Simpsons index (D) values. Both these indices ranked the community of Springside 

nature reserve (H = 4.01, D = 0.98), Palmiet Nature Reserve (H = 3.93, D = 0.97), and Drummond 

(H = 3.78, D = 0.97) as the most diverse. Whereas, Paradise Valley (H = 2.33, D = 0.89) and 

Hazelmere Dam (H = 2.58, D = 0.90) were ranked the least diverse. Furthermore, the high 

Simpson’s index values (D > 0.20) at all the localities suggest that the distribution of species 

appeared to be unevenly matched or balanced. This suggests that most species are not present in 

similar abundance throughout the localities, but rather that there are one or more species 

dominating the different sites.  

 

In general, when assessing molecular data and statistically supported data, UKZN 

(Pietermaritzburg campus), Drummond, Springside Nature Reserve, Iphithi Nature Reserve, and 

Palmiet Nature Reserve have the highest number of BINs, indicating high species richness and 

abundance in these regions. In contrast, Bartlett Estate, High Meadows, Vernon Crookes, 

Hazelmere Dam, and Paradise Valley have the lowest number of BINs. These regions are classified 

as the least diverse regions, even though they were sampled extensively. This could mean that 

there is a true lack of diversity in these regions. The overall structure, vegetation, and diversity of 

the different ecological niches could have affected the variation in species diversity across the 18 

localities.  
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Table 2.1 Univariate models of biodiversity estimation indices for each locality. S represents 

the total number of BINs present (richness), N represents the total number of individuals per a 

locality (abundance), d represents species diversity calculated from the Margalef’s diversity index, 

α represents Fisher’s α, indicating that the division of species per sampling locality, H’ represents 

Shannons index which estimates biodiversity richness and diversity and D represents Simpsons 

index which quantifies the biodiversity present at each locality. 

Sites S N d α H’ D 

Chase Valley Nature Reserve 19 60 4.40 9.58 2.68 0.92 

University of KwaZulu-Natal (PMB) 48 112 9.96 31.82 3.53 0.96 

Bisley Nature Reserve 34 79 7.55 22.64 3.22 0.95 

Hamilton Grassland 27 80 5.93 14.33 2.81 0.91 

Bartlett Estate 20 47 4.94 13.16 2.80 0.93 

Drummond 55 107 11.56 45.44 3.78 0.97 

High Meadows 21 45 5.25 15.33 2.83 0.93 

Springside Nature Reserve 70 121 14.39 69.29 4.01 0.98 

Iphithi Nature Reserve 54 108 11.32 42.98 3.64 0.96 

Giba Gorge 37 70 8.47 31.80 3.39 0.96 

New Germany  44 79 9.84 40.93 3.52 0.96 

Palmiet Nature Reserve 79 187 14.34 47.69 3.93 0.97 

Msinsi Nature Reserve 31 64 7.21 23.68 3.10 0.94 

North Park Nature Reserve 32 58 6.98 18.66 3.25 0.95 

Kenneth Steinbank Nature Reserve 38 84 8.35 26.74 3.41 0.96 

Vernon Crookes 19 44 4.76 12.0 2.74 0.92 

Hazelmere Dam 17 48 4.13 9.39 2.58 0.90 

Paradise Valley 13 32 3.46 8.16 2.33 0.89 

 

2.3.3 DNA Barcode gap analysis 

The presence of the DNA barcode gap was tested on the Hemiptera individuals assigned to 

morphospecies and DNA barcode clusters (BINs). Two different nucleotide substitution models 

(K2P and GTR+I+G) were used.    
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Using the COI morphospecies dataset (n = 256), the frequency distribution of the intraspecific 

and interspecific pairwise genetic distances was computed using K2P (Figure 2.3A) and GTR+I+G 

(Figure 2.3B) nucleotide substitution models. The frequency of the K2P pairwise distance values 

was distributed between the range of 0.00 to 0.4 whereas the frequency for the GTR+I+G pairwise 

distance values was distributed between the range of 0.00 to 1.20. The K2P pairwise distance 

values between species (range 0.00 to 0.4) were greater than within species (range 0.00 to 0.14) 

and the GTR+I+G pairwise distance values between species (range 0.00 to 1.20) were greater than 

within species (range 0.00 to 0.27). There is an overlap observed between the intraspecific and 

interspecific classes using both the K2P and GTR+I+G nucleotide substitution models on the COI 

morphospecies dataset (refer to the graph inserts in Figures 2.3A and 2.3B). The overlap using the 

K2P pairwise distance values occurred between 0.00 to 0.14, however here was a shift in the 

overlap using the GTR+I+G pairwise distance values, where the overlap occurred between 0.00 to 

0.24. The GTR+I+G nucleotide substitution model showed a much larger overlap than the K2P 

model. The presence of the overlap observed between the intraspecific and interspecific classes 

using the morphospecies dataset is common, it suggests that the identification of specimens within 

this overlap region was inaccurate. Species pairs found within the overlap region have low 

divergence values and include some whose taxonomic status as distinct species is debatable. Some 

of the families occurring within this overlap cannot be well differentiated phenotypically due to 

close morphological similarities. These families include Cercopidae, Cydnidae, Rhopalidae, 

Coreidae, Miridae, Pyrrhocoridae, Cicadellidae, Reduviidae, Rhyparochromidae, Pentatomidae, 

Fulgoridae, Flatidae, Thyreocoridae and Nabidae. Therefore, one must proceed with caution when 

dealing with the above-mentioned families. 

Using the COI BINs dataset (n = 357), the frequency distribution of the intraspecific and 

interspecific genetic distances was computed using K2P (Figure 2.3C) and GTR+I+G (Figure 

2.3D) substitution models. The frequency of the K2P pairwise distance values was distributed 

between the range of 0.00 to 0.4 whereas the frequency for the GTR+I+G pairwise distance values 

was distributed between the range of 0.00 to 1.20. The K2P pairwise distance values between 

species (range 0.07 to 0.4) were greater than within species (range 0.00 to 0.1) and the GTR+I+G 

pairwise distance values between species (range 0.08 to 1.20) were greater than within species 

(range 0.00 to 0.17). There is an overlap observed between the intraspecific and interspecific 

classes using both the K2P and GTR+I+G nucleotide substitution models on the COI BINs dataset 
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(refer to the graph inserts in Figures 2.3C and 2.3D). The overlap using the K2P pairwise distance 

values occurred between 0.07 to 0.1, however here was a shift in the overlap using the GTR+I+G 

pairwise distance values, where the overlap occurred between 0.09 to 0.17. The GTR+I+G 

nucleotide substitution model showed a much larger overlap than the K2P model. The overlap 

observed between the intraspecific and interspecific classes indicates possible misidentification of 

taxa or the presence of cryptic species within the BINs dataset. Unlike the morphospecies dataset, 

the overlap observed when using BINs was due to one specific taxon. The intraspecific distance 

values within the species Spilostethu pandurus created the overlap with the interspecific K2P and 

GTR+I+G pairwise divergence. If this taxon was removed from the dataset, a clear barcode gap 

would be observed. Therefore, one must proceed with caution when dealing with the above-

mentioned taxon. 

When comparing the use of the morphospecies dataset (Figure 2.3 A and 2.3B) to the BINs 

dataset (Figure 2.3C and 2.3D) with regards to the different substitution models it is observed that 

there is a greater overlap using the morphospecies dataset (K2P ranged between 0.00 to 0.14, and 

GTR+I+G ranged between 0.00 to 0.24) then BINs dataset (K2P ranged between 0.07 to 0.1, and 

GTR+I+G ranged between 0.09 to 0.17). There is far less misidentification of taxa present within 

the overlap of intraspecific and interspecific divergence when using the BINs dataset as compared 

to the morphospecies dataset.  

The Jeffries-Matusita (J-M) distance was calculated for the different datasets (morphospecies 

and BINs) using the different substitution models (K2P and GTR+I+G) to statistically analysis the 

overlap between the intraspecific and interspecific classes. The Jeffries-Matusita distance was 

calculated to be 1.72 for the morphospecies dataset using K2P, 1.67 for the morphospecies dataset 

using GTR+I+G, 1.97 for the BINs dataset using K2P, and 1.76 for the BINs dataset using 

GTR+I+G. These values were all greater than 1.414 and is very close to 2, suggesting that the 

intraspecific and interspecific classes are separable. This indicates that the degree of overlap 

observed in all the cases above is not statistically significant and there is, in fact, a barcode gap. 

The observed results in Figures 2.3A, 2.3B, 2.3C and 2.3D showed that the COI region is a suitable 

marker in the mitochondrial protein coding genes as a universal DNA barcode for the use in 

Hemiptera species delimitation within the eThekwini region.  
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Figure 2.3: Frequency distributions of pairwise distances (K2P and GTR + I + G) based on the COI gene of 1456 individuals sorted 

into 256 morphospecies and 357 BINs of Hemiptera from the eThekwini region. (A) Computed using K2P on the morphospecies dataset 

(B) computed using GTR + I + G on the morphospecies dataset (C) computed using K2P on the BINs dataset (D) computed using GTR 

+ I + G on the BINs dataset. A degree of overlap is observed between the intraspecific and interspecific genetic divergence (graph 

inserts). Genetic distances are placed on the x-axis and the frequencies are placed on the y-axis.
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2.3.4 Phylogenetic analysis 

 The phylogenetic trees constructed using the maximum likelihood approach and the Bayesian 

Inference recovered very similar topologies. There were no instances of conflict i.e. competing 

hypotheses supported by >75 % bootstrap support or > 0.95 posterior probability. As such all 

branch support values are shown on the most likely tree (Figure 2.7). All values above 75% 

bootstrap (BS) and 0.95 posterior probabilities (PP) were considered significantly well supported 

and highlighted on the phylogeny. This phylogeny was midpoint rooted as no outgroup taxa was 

included. The phylogeny represents 22 families and 181 genera. The mutation rate of the COI 

marker is appropriate to resolve species-level associations but our data suggests that this molecule 

may also be useful at higher taxonomic levels such as family and genus levels. 

There is evidence of monophyly in the following families (n = 14), however, in most of these 

families the branch support values were not very high (<75 % BS or < 0.95 PP): Cicadellidae (BS 

= 46.3, PP = 1.00), Tingidae (BS = 64.4, PP = 1.00), Anthocoridae, Miridae (BS = 17.5, PP = 

0.76), Reduviidae (BS = 26.4, PP = 0.98), Berytidae, Pyrrhocoridae (BS = 44.5, PP = 0.99), 

Pentatomidae (BS = 10.1, PP = 0.97), Coreidae (BS = 0.6, PP = 0.13), Psyllidae (BS = 50.8, PP = 

0.07), Aphrophoridae (BS = 87.7, PP = 0.99), Achilidae, Tropiduchidae and Delphacidae (BS = 

59.3, PP = 0.97). There is evidence of paraphyly in the following families (N = 4): Lygaeidae (BS 

= 4.5, PP = 0.80), Rhyparochromidae (BS = 2, PP = 0.27), Tettigometridae (BS = 100, PP = 0.95), 

and Eurybrachidae (BS = 68.2, PP = 0.96). There is evidence of polyphyly in the following families 

(n = 4): Fulgoridae (BS = 18.3, PP = 0.39), Cixiidae (BS = 18.9, PP = 0.45), Lophopidae, and 

Flatidae (BS = 18.7, PP = 0.68). Overall it is observed that a majority of the families in the COI 

Hemiptera dataset are monophyletic suggesting that the COI marker can resolve Hemiptera 

families relatively well. Most of the branches present within each family had well supported 

bootstrap and/or posterior probabilities.  

The phylogenetic tree (Figure 2.4) was further analyzed to the genus level to see how well the 

COI marker could resolve at this taxonomic level. There was evidence of monophyly in 128 of the 

genera, paraphyly is 31 of the genera, and polyphyly in 22 of the genera. Most of the genera were 

well supported, with majority of them being monophyletic, this suggests that the COI marker can 

resolve the different genera of Hemiptera relatively well. 
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Figure 2.4: Most likely tree of 357 representative (BINs) Hemiptera specimens using their COI sequence data. The branches of the 

tree are colour coded by family. Only significantly supported branch support values (Bootstrap value ≥ 75%, Posterior probability value 

≥ 0.95) are shown. 
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2.4 Discussion 

Since 2003 DNA barcoding has gained momentum as an automatable, accurate and rapid 

method of species identification (Hebert & Gregory 2005). DNA barcoding has the ability to 

identify specimens to previously described species or families, by comparing an unknown query 

barcode sequence to barcodes of taxonomically identified species in the BOLD database. DNA 

barcoding can be successfully applied when a good reference library is created and the data 

conform to two main criteria. First, there needs to be a match between the number of species 

recognized by traditional morphological techniques and genetic barcode clusters (BINs). Second, 

there needs to be minimal overlap between intraspecific and interspecific genetic divergences. If 

these assumptions are met, then DNA barcoding offers a great number of advantages and is a 

complementary tool for the traditional morphological identification in biodiversity studies.  

Developing a complete reference library for any region is a formidable task. In this study, I 

focused on a small regional area as a case study. The main aim of this chapter was to test for the 

utility of DNA barcoding to accurately identify Hemiptera species collected from the eThekwini 

region and surrounding areas. This was done by statistically comparing the number of 

morphospecies collected at each locality to the number of BINs recovered by the DNA data. I also 

tested for the presence of the barcode gap in the data and looked at what effect model choice has 

on the barcode gap. The conclusions drawn from this study are, however, applicable to the 

construction of reference libraries for larger geographic areas and for other taxa.  

2.4.1 DNA barcoding compliments traditional morphological-based techniques 

There will always be possible flaws during species identification when dealing with either the 

traditional morphology-based method or DNA barcoding. DNA technology can never replace 

morphological analysis but this study supports the use of DNA barcoding as a complementary tool 

to traditional morphological species identification. An integrative approach combining the 

strengths of these two methods would be the most comprehensive way to achieve a more sound, 

reliable, and efficient species identification system. 

In this study, specimens were separated into 256 morphospecies and subsequent molecular 

testing and phylogenetic tree construction suggested the presence of at least 357 unique genetic 

barcode clusters (BINs). The barcode data suggests that the variation in the number of 
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morphospecies and BINs were a result of cryptic speciation and the presence of Hemiptera at 

different developmental stages (i.e. immature and adult forms of Hemiptera). Cryptic speciation 

presents a challenge when attempting to quantifying biodiversity. The estimation of species 

richness and endemism is crucial to identifying habitats which qualify for conservation. The 

discovery of cryptic speciation has been accelerated by the ease of obtaining DNA sequences from 

organisms. Investigating whether cryptic speciation is more common in a certain geographic area, 

habitat, biome, or vegetation type could enhance our knowledge and speed up conservation efforts 

(Bickford et al. 2006). 

In this study, the DNA barcode data provides evidence for possible cryptic speciation in 

Hemiptera.  An example of possible cryptic speciation which would have been overlooked by a 

novice taxonomist can be seen in the family Aphrophoridae (Figure 2.5), where the species Clovia 

albomarginata and Aphrophora parallella. These two taxa look morphologically very similar but 

belonged to very different genetic lineages. An example of Hemiptera at different developmental 

stages was seen in the family Pentatomidae (Figure 2.6). In this case the immature form of 

Palomena prasina looks very different from the adult morph. This study highlights the fact that 

DNA barcoding is useful when cryptic species are involved and morphological identification is 

difficult (Gregory 2005). This is particularly important when diversity studies are being conducted 

by researchers, which are not expert taxonomists as was the case in this study.  

 

 

   

 

 

 

Figure 2.5: The representation of cryptic speciation in the family Aphrophoridae. The 

individual on the right is Clovia albomarginata and the individual on the left is Aphrophora 

parallella. 
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Figure 2.6: The representation of Pentatomidae Palomena prasina during their different life 

cycles. The individual on the right is the immature form and the individual on the left is the adult 

form. 

2.4.2 Assessing the diversity of the eThekwini South African Hemiptera  

In this study the species diversity and species richness was assessed at a small regional scale, a 

total of 1456 specimens were collected from the eThekwini region and surrounding areas and 

comprised of an estimated 357 distinct genetic lineages which may represent species and 22 

families. In comparison, several other studies which focused on much larger geographic scales 

found comparable or less Hemiptera diversity (Liu et al. 2013; Foottit et al. 2014; Raupach et al. 

2014; Tembe et al. 2014). For example, a study conducted in Germany surveyed most of the 

country and collected a total of 1742 specimens which comprised of 457 species and 39 families 

(Raupach et al. 2014). A study conducted in Canada collected 1482 Hemiptera specimens from 

the Canadian National Collection of Insects center, these specimens comprised of 471 species and 

147 genera (Foottit et al. 2014). Moreover, a study conducted in the Western Ghats of India 

collected 80 specimens comprising of 43 species and 35 genera (Tembe et al. 2014). Finally, an 

Asian study collected 214 Hemiptera specimens across the South-east of Asia, which made up 42 

species and 9 genera (Liu et al. 2013). The high levels of diversity seen in our preliminary data set 

highlight the remarkable diversity within the eThekwini region. This however, places emphasis on 

the fact that this region needs to be conserved and effectively managed in order to protect the 

valuable biodiversity found within this region. Continued urbanization may threaten this 

biodiversity and any further developments within the region should consider incorporating green 

spaces and biodiversity corridors in town planning.  
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2.4.3 The DNA barcode gap 

This study was carried out on a small regional scale, this is an important factor to consider as 

many species are expected to be closely related. As such, this study is an excellent case study to 

test the utility of DNA barcoding and its success. This study provides evidence that a COI-based 

identification system is effective for the identification of Hemiptera species within the eThekwini 

region. These results suggest that this system will also be applicable to the rest of South Africa. 

The results obtained from the gap analysis was consistent in terms of the distinct overlap between 

the intraspecific and interspecific pairwise distances, despite assigning individuals to either 

morphospecies or barcode clusters (BINs) and the use of different nucleotide substitution models 

(K2P versus GTR+I+G). However, there was a greater overlap seen when using morphospecies 

then when using BINs, together with a distinct shift in the overlap when using the different 

nucleotide substitution models. This observation suggests that the use of BINs is more reliable 

then use of morphology-based identification when testing for the presence of the DNA barcode 

gap. Further statistical analysis (J-M distance test) suggests that despite some overlap between the 

intraspecific and interspecific genetic divergence of Hemiptera, the two classes are separable. This 

provides strong evidence for the existence of the DNA barcode gap in our data as the overlap was 

seen in a very insignificant portion of our data. Species found in the overlap should be flagged and 

caution should be taken when working with those species. 

The barcode gap found in this study supports the findings of previous studies done on 

Hemiptera (Park et al. 2011; Raupach et al. 2014; Tembe et al. 2014). Park et al (2011) and 

Raupach et al (2014) both demonstrated the success of DNA barcoding in the species identification 

of Hemiptera and Tembe et al (2014), reported that a distinct barcode gap was observed in the 

intraspecific and interspecific genetic divergence seen at higher taxonomic levels of Hemiptera. 

Throughout the literature of DNA barcoding and the DNA barcode gap analysis, an important 

observation was made, this observation was that the range in which the barcode gap occurs differs 

across different datasets. It is, therefore, important that each study that used DNA barcoding 

include the barcode gap analysis to assess the success of the COI marker to reliably identify species 

of their study organisms.  
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2.4.4 Phylogenetic analysis of the COI marker 

The mitochondrial COI gene has a mutational rate appropriate for the resolution of 

associations at the species level.  One of the aims of this study was to determine if this single 

marker system could also provide information on higher-level relationships (genus- or family-level 

associations) within South African Hemiptera. In this study, using individuals from the 22 families 

and 181 genera of Hemiptera, the phylogeny-based analysis (maximum likelihood and Bayesian 

inference) indicated that the COI sequences are phylogenetically informative enough to provide 

information at both family and generic level. Most of the families and genera were well supported 

with a majority of them being monophyletic, suggesting the reliability of the COI marker at higher 

taxonomic levels. 

2.5 Conclusion 

The increase in urbanization within and around the eThekwini region increases the risk of the 

loss of biodiversity and in turn increasing the risk of species extinctions. The data generated by 

the present study will contribute towards D’MOSS and facilitate conservation planning. In this 

study, it was shown that DNA barcoding using the selected DNA barcode marker (COI) can 

distinguish between the different barcode clusters and morphospecies allowing for species 

identification. It is recommended that DNA barcodes should be used in combination with 

morphology-based methods. The results from this study warrants further investigation using 

approaches such as phytogeography or landscape genetics. The barcode data could then be used to 

assess the diversity of different species in an ecosystem and could shed light on genetic diversity 

of taxa below the species level. Using patterns of genetic variation gene flow along urban green 

corridors can be assessed and quantified. Connectivity network can be constructed for eThekwini 

which can be used to model the movement and spatial distribution of biodiversity in the region. 

Stakeholder’s can use this information to inform the public and implement conservation plans. 

This, however, was a preliminary study, additional sampling, and sequencing to ensure the 

presence of barcode gap at a larger scale of sampling is required before full reference library will 

be available for use.  
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Chapter Three 

The utility of DNA barcoding as a practical tool to assess the success of 
ecological restoration using Hemiptera as a biological indicator 

Abstract 

DNA barcoding has been used in a wide range of studies to understand and assess aspects that 

are related to ecology, evolution, conservation, and biogeography. In addition, it is useful in many 

different ecological applications such as species monitoring, and ecological habitat restoration. 

Invertebrates are excellent biological indicators as they can be used to assess changes in species 

diversity or community assemblage in the context of restoration ecology. Understanding trends in 

species composition and assemblage of key invertebrate groups can provide important insight into 

the condition of, or changes in the environment. In this study, DNA barcoding is used to assess the 

potential of Hemiptera as an indicator of restoration success for the Buffelsdraai Landfill Site 

Community Reforestation Project. A total of 393 specimens were collected from sites reforested 

at distinct phases in the years 2010, 2012 and 2015 and reference sites (forest and grassland) 

selected within the buffer zone of the Buffelsdraai regional landfill site. The Hemiptera species 

composition and assembly were assessed by analyzing multiple diversity indices, ordination, 

UPGMA cluster analysis and phylogenetic analysis. A significant difference was uncovered for 

Hemiptera species composition among the different reference sites as well as between 2015, 2012 

and 2010 reforested sites. This study highlights the utility of DNA barcoding as a tool to monitor 

the success and progress of the reforestation being carried out in the buffer zone of the Buffelsdraai 

regional landfill site by further analyzing the use of Hemiptera as a suitable biological indicator.  
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3.1 Introduction 

3.1.1 The use of DNA barcoding as a practical tool in conservation biology 

Many biological fields such as ecology, evolution, biogeography, and conservation biology 

utilizes molecular analysis to understand species diversity, composition, and assembly (Fine & 

Kembel 2011; Harmon-Threatt & Ackerly 2013; Willows-Munro & Schoeman 2015). In recent 

years, the use of DNA barcoding as a molecular tool to identify species, has proved to be an 

appealing tool to help resolve taxonomic ambiguity, to enhance biodiversity inventories, and to 

support many applications that require species identification in conservation biology (Hebert et al. 

2004; Rubinoff et al. 2006; Valentini et al. 2008). A combination of ecological processes and 

evolutionary changes influence community composition at both local and regional scales, therefore 

DNA barcoding has the potential to become an integral tool to understand these changes (Kress & 

Erickson 2008; Valentini et al. 2008; Fine & Kembel 2011; Harmon-Threatt & Ackerly 2013). In 

addition, DNA barcoding can be used in ecological applications such as species monitoring, 

identifying morphologically indistinguishable life stages, and monitoring of ecological change 

(Kress & Erickson 2008; Valentini et al. 2008).  

Despite the utility of DNA barcoding in ecological applications, there are a limited number of 

studies that have utilized DNA barcode data at a practical level to monitor the progress of 

ecological restoration. Rather, a focus has been placed on the choice of the barcoding region and 

technical aspects of generating useful DNA sequence data (Kress & Erickson 2008). This study 

aims to test the practical potential for using DNA barcoding in conservation biology and 

restoration ecology.  

3.1.2 Ecological restoration  

The increase in urbanization has caused an increase in the loss and degradation of natural 

habitats and biodiversity, there is thus a need for ecologists and conservation biologists to pay 

attention to urban restoration (Wallington et al. 2005; Cabin et al. 2010; Verdú et al. 2012). 

Ecological restoration is the process of assisting in the recovery of an ecosystem that has been 

disturbed, degraded, and destroyed through human involvement such as deforestation and 

urbanization (Ruiz-Jaen & Mitchell Aide 2005; Clewell & Aronson 2007; Wortley et al. 2013). 

Ecological restoration projects differ in their objectives and goals; however, the main goals are 
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usually to enhance, mitigate, and re-establish ecosystems that are resilient, self-sustaining and can 

recover from anthropogenic disturbances (Ruiz-Jaen & Mitchell Aide 2005; Wortley et al. 2013; 

Galimberti et al. 2016). Restoration can accomplish these goals by creating environments which 

have a diverse species composition, which demonstrates a complex community structure, are 

indigenous to the area being restored and that contains species which belong to multiple functional 

groups (Clewell & Aronson 2007; Galimberti et al. 2016). Restoration plays a key role in the 

conservation of biodiversity and by understanding the processes of restoration, important 

information on community and evolutionary ecology can be obtained (Verdú et al. 2012).  

A key consideration in ecological restoration is the ability to monitor the progress and success 

of restoration efforts (Ruiz-Jaen & Mitchell Aide 2005). Monitoring of restoration is critical for 

the development of good land-use practices which would allow for adaptive management and 

maintenance of restored sites (Ruiz-Jaen & Mitchell Aide 2005; Clewell & Aronson 2007; Wortley 

et al. 2013). The Society for Ecological Restoration (SER) Primer is a driving force behind 

ecological restoration and contributes basic guidelines towards restoration planning together with 

a list of nine key attributes for successful restoration (Ruiz-Jaen & Mitchell Aide 2005; Wortley 

et al. 2013). These attributes can be narrowed down to three main factors, namely, vegetation 

structure, species diversity and abundance, and ecological processes (Ruiz-Jaen & Mitchell Aide 

2005). This study focuses on how vegetation structure affects species diversity and abundance.  

Another key aspect of restoration monitoring is the inclusion of information from reference 

sites. Reference sites are valuable sources of information that demonstrate the intended path of 

restoration projects and are an essential component to the evaluation of restoration success (Ruiz-

Jaen & Mitchell Aide 2005; Clewell & Aronson 2007). Reference sites should preferably occur 

within the same landscape or close to the restoration site, as they need to share key ecological and 

geographic features to serve as a template for species composition and community assembly (Ruiz-

Jaen & Mitchell Aide 2005; Clewell & Aronson 2007). Having more than one reference site in a 

restoration study is advised as variation often occurs among different sites (Ruiz-Jaen & Mitchell 

Aide 2005).  
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3.1.3 The use of biological indicators to monitor the progress and success of ecological 

restoration 

The biodiversity present in restored plots are one of the most important factors to consider 

when assessing restoration success. Functional self-sustaining ecosystems vary in species 

composition, diversity, and stratification (Moir et al. 2005; Orabi et al. 2010; Pander & Geist 

2013). The high levels of species diversity and abundance are associated with biodiverse 

environments which contribute to ecosystems resilience (Orabi et al. 2010; Pander & Geist 2013). 

Accurately sampling and monitoring all species in an environment is a difficult task. Instead 

suitable, and effective biological indicators need to be selected to evaluate restoration success 

(Anderson et al. 2011; Pander & Geist 2013). Good indicators should display a narrow ecological 

range, reflect the abiotic or biotic state of an environment, possess rapid response to environmental 

change, have a wide distribution, and must be inexpensive to sample (Bellinger & Sigee 2010; 

Anderson et al. 2011). In addition, an important aspect to consider when selecting biological 

indicators in ecological restoration is to understand the ecological relationship between the 

selected indicator and the wider community structure of the restoration site (Orabi et al. 2010; 

Anderson et al. 2011).  

Invertebrates are well established as good biological indicators as they are very small, often 

mobile, have relatively short generation times and are sensitive to changes in an ecosystem 

(Anderson et al. 2011). They can also be used to monitor species diversity, community assembly 

and species composition (Orabi et al. 2010). Many taxonomic groups such as Aves (Galimberti et 

al. 2016), Coleoptera (Parmenter & Macmahon 1987) and Orthoptera (Parmenter et al. 1991) have 

been studied and used to monitor the success of ecological restoration, however, very few studies 

have focused on the use of Hemiptera as a biological indicator. 

The order Hemiptera is one of the largest, most diverse groups of hemimetabolous insects 

(Park et al. 2011; Raupach et al. 2014). They are known to play a functional role in agricultural 

ecosystems and are used as biological control agents (Wheeler 2001; Park et al. 2011; Raupach et 

al. 2014). Members of this order are known to reflect biophysical changes in the environment as 

they are sensitive to habitat fragmentation and environmental changes (Orabi et al. 2010). In 

addition, Hemiptera may be suited to studying and understanding the progress of restoration as the 
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group includes both specialist and generalist plant feeders, making them sensitive to changes in 

the quality, structure, and species composition of the plants they feed on (Prestidge & McNeill 

1983; Hartley et al. 2003; Orabi et al. 2010). 

Despite the dominance of Hemiptera in many ecosystems and their advantages as biological 

indicators, there is very limited knowledge and information on them regarding their use in 

ecological restoration and reforestation. This present study is unique in that restoration studies 

have seldom used genetic approaches to understand how species composition and assemblage are 

affected in restored environments with the changes in vegetation types. This study focuses on the 

use of DNA barcoding as a tool to monitor the success and progress of ecological restoration and 

reforestation. Hemiptera will also be assessed as suitable biological indicator taxa. 

3.1.4 Buffelsdraai reforestation and restoration ecology case study 

The Buffelsdraai Landfill Site Community Reforestation Project was initiated in 2008 by the 

eThekwini Municipality in partnership with the Wildlands Conservation Trust and Durban Solid 

Waste Management Department (Douwes et al. 2015a; Douwes et al. 2015b). This project started 

to help alleviate the impact of climate change and to help offset a percentage of the greenhouse 

gas emissions generated by hosting the FIFA 2010 World CupTM in Durban, KwaZulu-Natal 

(Douwes et al. 2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). However, the aims of 

this community reforestation programme are three-fold: 1) to uplift the surrounding community, 

2) to improve biodiversity, and 3) to contribute to climate change adaptation and mitigation.   

This project was started within the 757-hectare buffer zone of the municipality’s Buffelsdraai 

regional landfill site. The land that the landfill site and the buffer zone is situated on was previously 

old agricultural land, planted with sugarcane, or land with limited productive capacity, or infested 

by invasive alien plants (Douwes et al. 2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). 

Of the 757-hectare buffer zone, 580-hectares has been set aside for the reforestation project. This 

restoration project aims to increase the native biodiversity present in an area that was previously 

under sugarcane production and to transform the buffer zone into a native forest (Douwes et al. 

2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). Initial indigenous tree planting started 

in 2009, this was then followed by more intensive planting from 2010 onwards (Douwes et al. 
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2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). As of January 2015, a total of 595 476 

trees were planted in the buffer zone, these trees include 51 locally indigenous species, the most 

common being Acacia natalitia, Erythrina lysistemon and Bridelia micrantha (Douwes et al. 

2015a).  

 3.1.5 Aims 

This study aims to test whether South African Hemiptera can be used as biological indicators 

to track the progress of ecological habitat restoration in the region. This will be carried out using 

Hemiptera specimens collected from the Buffelsdraai Regional Landfill Site’s buffer zone. 

Hemiptera specimens were collected from the restoration sites which were reforested at distinct 

phases (2015, 2012 and 2010). Species diversity, richness, and composition of Hemiptera will be 

analysed. The Hemiptera collected from the selected sites will be compared to the native grassland 

and forest sites also present within the Buffelsdraai Regional Landfill Site’s buffer zone. DNA 

barcoding will be used to identify Hemiptera species and to further analyse the use of Hemiptera 

as a suitable biological indicator taxa. 

3.2 Materials and methods 

3.2.1 The study area 

This study took place at the Buffelsdraai Regional Landfill Site, north of Durban, in the 

KwaZulu-Natal province, South Africa (Figure 3.1). All landfill sites are required to have a buffer 

zone between the active landfill and the adjacent communities. The Buffelsdraai buffer zone is a 

minimum of 800 m wide and 787 hectares in extent which shields the neighbouring communities 

(Buffelsdraai and Osindisweni) from the impacts of the landfill site (Douwes et al. 2015b). The 

study areas encompass different types of vegetation and land use types. These include woodlands, 

sugarcane, riparian forest, transitional weed, fallow lands, thicket, indigenous forest (non-

riparian), grassland, maintained areas, rural settlements, infrastructure and bareland (Douwes et 

al. 2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). A large portion of the 757-hectare 

buffer zone was under sugarcane cultivation, until 2009 when the eThekwini municipality decided 

to rehabilitate the sugarcane, transitional weed and fallow lands to their original forested state 
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(Douwes et al. 2015b). The Buffelsdraai regional landfill site’s buffer zone were divided up into 

management blocks which were reforested in distinct phases. Indigenous tree planting started in 

2009, which was followed by more intensive planting in 2010, 2012 and 2015 (Douwes et al. 

2015a; Douwes et al. 2015b; Diederichs & Roberts 2016). 

3.2.2 Study design and site selection 

Hemiptera samples were collected from 20 plots from the 8 different sites which were selected 

from the Buffelsdraai regional landfill site’s buffer zone (Table 3.1, Figure 3.1). Samples were 

collected from three management blocks, which had been planted with indigenous trees in 2015, 

2012, and 2010. The 2015 reforested site was predominantly covered in sugarcane with scattered 

tree saplings (less than 1 m in height), the 2012 site had a mixture of grassland and scattered trees 

(2 – 3 m height in average) and the 2010 site was predominately covered in a juvenile forest (small 

trees up to 5 m with a tree canopy cover between 50 - 75%) vegetation type. Samples were also 

collected from reference sites which had native forest and grassland. Each of the reforested and 

reference sites were sampled four times to get a true reflection of the biodiversity within the sites. 

The reforested areas were sampled at two wet sites and two dry sites. Sites that were classified as 

wet were found close to or alongside the drainage lines, whereas sites that were classified as dry 

were found further away from the drainage lines.   
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Table 3.1: Sites selected for this study. The table indicates the number of plots each site was 

sampled at, the age of reforestation at each site and the predominant vegetation type occurring at 

each site. 

Site code Restored/ reference No. of plots 

sampled 

Age class 

(years) 

Vegetation type 

2015 wet Restored/ reference 2 1 Sugarcane + scattered trees 

2015 dry Restored/ reference 2 1 Sugarcane + scattered trees 

2012 wet Restored 2 4 Grassland + scattered trees 

2012 dry Restored 2 4 Grassland + scattered trees 

2010 wet Restored 2 6 Juvenile forest 

2010 dry Restored 2 6 Juvenile forest 

Forest Reference 4 - Established forest 

Grassland Reference 4 - Grassland 
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Figure 3.1: Map illustrating the 20 plots from the 8 different sites selected for sampling within the Buffelsdraai regional landfill 

site’s buffer zone (KwaZulu-Natal, South Africa).
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3.2.3 Sampling procedure 

During October 2015 Hemiptera specimens were collected from the different sites using a 

combination of sweep netting, tree beating and active searching. A total of 393 specimens were 

collected. All specimens were stored in ethanol (100%) at -20 degrees Celsius.  

3.2.4 Sorting of specimens into morphospecies 

The collected Hemiptera specimens were identified to the lowest taxonomic level possible 

through the use of morphological keys (Schuh & Slater 1995; Maw et al. 2000; Cassis et al. 2002). 

Morphological features such as body size, shape, colour patterns and wing structure were taken 

into consideration (Shen et al. 2013). Each specimen was given a unique code to assist with 

identification and data tracking. Each code is made up three characteristics, the location from 

where the specimen was collected, the type of vegetation present at the location, and a unique 

specimen number.  All the specimen was photographed using a USB Digital Microscope 2.0 - 

Moticam 2300. Specimens were deposited at the University of KwaZulu-Natal (Pietermaritzburg 

campus). This repository is recognized by the Barcode of Life project as an official storage facility 

for specimens that have been barcoded. Successful DNA barcodes in this study will be uploaded 

to BOLD. 

3.2.5 Genomic DNA extraction and Polymerase Chain Reaction (PCR) amplification 

Where possible, five individuals of each morphospecies per sampling site were selected for 

DNA barcoding analysis. Multiple individuals of each morphospecies were included to incorporate 

spatially-correlated variation within species (Bergsten et al. 2012). A single leg from ethanol-fixed 

specimens was removed and the total genomic DNA was extracted from 132 specimens using the 

ZR Tissue and Insect MicroPrepTM kit (ZYMO research), following the manufacturer’s 

instructions. The concentrations and quality of the extracted genomic DNA was quantified using 

a NanoDrop Spectrophotometer 2000 (Thermo Scientific). 

The mitochondrial COI gene was amplified using the universal primers 

LCO1490 (5′- GGTCAACAAATCATAAAGATATTGG-3′) and 

HCO2198 (5′- TAAACTTCAGGGTGACCAAAAAATCA-3′) originally developed by Folmer et al. 

(1994).  The PCR and PCR product visualization was carried out as described in chapter two. 
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3.2.6 Sequencing, data processing, phylogenetic tree construction and database 

construction 

Successfully amplified PCR products were sent to the Central Analytical Facility at 

Stellenbosch University for sequencing. Both forward and reverse sequences were generated. The 

electropherogram of each PCR amplicon was examined for quality in BioEdit 7.0.9.0 sequence 

alignment editor (Hall 1999).  Barcode compliant sequences (>500-bp of length, no stop codons, 

misidentifications, or contamination) generated in the present study (n = 132) were aligned using 

ClustalX 2.1 (Larkin et al. 2007). Summary statistics such as the number of variable characters 

(V), number of parsimony informative characters (Pi) and the average nucleotide compositions 

were estimated for the data using MEGA 6.0 (Tamura et al. 2007).  

MEGA 6.0 was used to construct a neighbor-joining (NJ) tree, thereafter, Barcode Index 

Numbers (BINs) were assigned to barcode clusters present on the NJ tree. Each COI sequence on 

the NJ tree was blasted against the global BOLD reference library. Sequence similarity to the top 

search hit was recorded. Taxa with similarity values greater than a 95% were considered already 

present in BOLD. Conditional genus-level or family-level identification was allocated to taxa with 

sequence similarity values less than 95%. 

3.2.7 Estimating species diversity and abundance 

A database of the Hemiptera specimens collected from Buffelsdraai was constructed using 

Microsoft Office Excel 2010. The database served as a personal reference library and included the 

following information for each specimen: BIN, the unique specimen name, morphospecies 

allocation, taxonomy (order, family and where possible, genus and species name), sampling site, 

vegetation type and sequence similarity score from the top hit in BOLD. This information was 

then used to compare the total number of specimens collected from the different restored (wet and 

dry) and reference sites, in addition this information was used to compare the number of 

morphospecies and BINs at the different sampling sites.  A chi-squared test was done to check for 

any significant difference between the number of morphospecies and number of BINs recorded 

from each sampling site.  
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3.2.8 Diversity indices 

Species diversity analyses were carried out for Hemiptera at each of the sampling sites using 

the program Past 3.44 (Hammer et al. 2001) on the full barcode dataset (BINs dataset) containing 

132 sequences. These analyses were carried out on the dataset containing BINs to link sample 

heterogeneity and estimates of species richness and abundance, both within and between each 

locality, species diversity was calculated using four most widely accepted diversity indices, 

namely, Margalef’s diversity index (d) (Margalef 1958), Fisher’s α (α) (Fisher et al. 1943), 

Shannons diversity index (H’) (Shannon & Weaver 1963) and Simpson’s diversity index (D) 

(Simpson 1949) as illustrated in chapter two.    

3.2.9 Ordination 

Non-metric multidimensional scaling (NMDS) analysis based on Bray-Curtis dissimilarity 

matrix (Bray & Curtis 1957) was carried out in Past 3.44 to visualize differences between sampling 

points in ordination space, on the BINs dataset. In this study, Hemiptera species composition and 

assemblage were considered. When using 2-dimentional ordination, the stress value associated 

with this analysis is affected by the quality of the data used. The general rule to analysis the stress 

value output from the ordination analysis is as follows: stress ≤0.05 gives an excellent 

representation, with no prospect of misinterpretation of the data, stress ≤0.1 represents a good 

ordination with no real risk of misinterpretation, stress ≤0.2 may still give a potentially useful 

ordination, but cross-checks with other techniques are recommended (Clarke & Warwick 1994). 

The significance of the NMDS clusters was tested by using permutational MANOVA 

(PERMANOVA) which was carried out in Past 3.44. PERMANOVA is a multivariate analysis of 

variance technique that is used for abundance data, where significance is based on permutation of 

the dissimilarity matrix (Anderson 2001). PERMANOVA was conducted using the Bray-Curtis 

dissimilarity matrix to determine the significance between the different sampling site points in the 

ordination plot of the Buffelsdraai data. 

3.2.10 UPGMA clustering analysis 

In addition, the clustering analysis using unweighted pair-group average (UPGMA) was 

carried out to cross-check the reliability of the NMDS ordination. UPGMA was conducted using 
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the Bray-Curtis dissimilarity matrix in Past 3.44 on the BINs dataset, clusters were joined based 

on the mean of the relative abundance of specimens for each locality. 

3.2.11 Phylogenetic Analysis 

In addition to the construction of a neighbor joining (NJ) tree, an additional maximum 

likelihood phylogenetic approach was taken to assess the taxonomic coverage of Hemiptera across 

the different sampling sites as well as test whether there were indicator species that were associated 

with a specific habitat. Maximum likelihood analysis was performed on the BINs dataset. The 

best-fit nucleotide substitution model was selected using the Akaike Information Criterion (AIC) 

(Akaike 1974) in the program jModelTest 2 (Darriba et al. 2012). The model of best-fit for the 

data was the general time reversible model (GTR) with both gamma distribution (G) and 

proportion of invariable sites (I). This model was used in all subsequent maximum likelihood 

analysis. 

RAxML 8.0 (Stamatakis 2014) was used to construct the maximum likelihood analysis. The 

tree search method was ML + thorough bootstrap implementing 1000 bootstrap replicates. This 

analysis generated both the most likely tree and a bootstrap tree file, which contained the 1000 

bootstrap trees. A consensus tree was created from the bootstrap file using Phylip 3.69 (Felsenstein 

2005). Thereafter, trees were viewed and modified using the program Figtree 1.3.1 (Rambaut 

2009). 

3.3 Results 

3.3.1 Data description 

The COI gene region was successfully amplified and sequenced from all 132 specimens, these 

specimens were all barcode-compliant (>500-bp of length, no stop codons, misidentifications, or 

contamination). The 132 sequences were easily alignable as there were no insertions, deletions, or 

stop codons. The final alignment was 634 base pairs in length (381 variable sites of which 347 

were parsimony informative). The Hemiptera database used for this study consisted of 132 

specimens, which were clustered into 119 BINs and 117 morphospecies. The average base 

composition for the full dataset was 35.5% thymine (T), 18.2% cytosine (C), 31.1% adenine (A) 

and 15.2% guanine (G). The nucleotide compositions of all the sequences were heavily biased 
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toward A and T nucleotides which are common in insect mitochondrial genomes (Raupach et al. 

2014).  

3.3.2 Species richness and diversity 

To estimate the species richness, abundance and diversity, the number of specimens for the 

dry sites (n = 99), wet sites (n = 127), overall total specimens (n = 393) and morphospecies (n = 

307) per sampling site were plotted (Figure 3.2A) using the total number of specimens collected 

from the Buffelsdraai landfill sites’ buffer zone. In general, there is an increase in the number of 

specimens in the wet sites as compared to the dry sites. This suggests that the moisture content of 

the different sites directly influences the distribution of specimens. Further, the trend shown in 

Figure 3.2 suggests that the number of specimens and morphospecies are directly proportional to 

the age of the reforested sites and the vegetation types of the different sites. As the vegetation type 

at the sites shifts from sugarcane and to native grasslands and forests, the species richness and 

abundance values increase, highlighting the success of the ecological restoration. The specimens 

collected from the forest and grassland reference sites are used to represent the natural undisturbed 

environments within Buffelsdraai landfill sites’ buffer zone. There is evidence of an elevated 

number of specimens in the 2010 reforested site as compared to the forest reference site, this is 

due to three confounding factors. First, the samples collected from the forest reference site could 

be underrepresented as it is difficult to sample tall trees and the dense vegetation type which is 

predominate in the forest reference site. Second, there is a greater diversity of ecological niches 

with a mixed vegetation type present in the 2010 reforested site as compared to the forest reference 

site which only has one type of vegetation structure. The increased number of vegetation types in 

the 2010 reforested site could have affected the elevated number of specimens collected from this 

site as compared to the forest reference site. Third, there could be a high number of introduced 

species in the 2010 reforested site rather than natural species. Examples of introduced Hemiptera 

species in the 2010 reforested site include Clavigralla horrida (family: Coreidae), Zicrona 

caerulea (family : Pentatomidae), and Spilostethu spandurus (family : Lygaeidae) which are native 

to Costa Rica and are known to be invasive species all around the world (Kaufman et al. 1929).  



 

66 
 

 

 

 

 

 

 

 

 

Figure 3.2: Bar graph representing the distribution of specimens and morphospecies amongst 

the different sampling sites included in the present study. Each of the test sites (2015, 2012, and 

2010) were divided into wet and dry. The number of specimens per wet (orange) and dry (pink) 

were plotted together with the total number of specimens for both the sites (blue) and 

morphospecies (yellow). 
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3.3.3 The correlation between BINs and morphospecies 

Specimens collected from the different sites within the Buffelsdraai landfill sites’ buffer zone 

were sorted into morphospecies, thereafter, a maximum of 5 representatives of each 

morphospecies was selected for DNA analyses. The number of specimens (n = 132), 

morphospecies (n = 119) and BINs (n = 117) per sampling site were plotted (Figure 3.3) and used 

to assess the correlation between BINs and morphospecies observed. Generally, the number of 

BINs and morphospecies observed from each site were similar. In support of this observation, a 

chi-square test of coherence between BINs and morphospecies demonstrated no significant 

difference in any of the sites (p > 0.05). Both the 2012 and 2010 reforested sites have an increased 

number of BINs as compared to morphospecies, this variation in the number of morphospecies 

and BINs recorded from these sites could suggest cryptic speciation. In contrast, the grassland 

reference site is observed to have an over estimation of species based on morphology when 

compared to BINs, which suggests the presence of Hemiptera specimens which are 

morphologically variable or specimens which are at different developmental stages. The presence 

of cryptic species and species at different developmental stages highlight the importance of 

utilizing DNA barcoding as an identification tool in this study. When selecting a maximum of 5 

morphospecies per site, it is observed that the reforested plots had a high species diversity when 

to compared both the forest and grassland reference sites. This is due to the three confounding 

factors mentioned in the previous section (3.3.2 Species richness and diversity).  
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Figure 3.3: Bar graph representing the distribution of specimens, morphospecies and BINs 

amongst the different sampling sites included in the present study. 

 

3.3.4 Diversity indices 

 

Species richness, abundance and diversity were calculated and used to assess the different 

reforested sites (2015, 2012, and 2010) and reference sites (forest and grassland) in the 

Buffelsdraai landfill sites’ buffer zone on the BINs dataset (n = 132) (Table 3.2). Diversity indices 

for each of the reforested sites were calculated for both the wet sites and the dry sites, in addition, 

the samples from both the wet and dry sites were pooled and the diversity indices were calculated 

overall for each of the reforested sites. Species richness (S) among the different sites varied 

significantly, with the 2010 reforested site having the highest species richness (S = 20 dry sites 

and 21 wet sites), followed by the 2012 reforested site (S = 10 dry sites and 18 wet sites) and the 
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2015 reforested site (S = 12 dry sites and 8 wet sites). In the reference sites, it was observed that 

the grassland sites had a higher species richness (S = 23) then the forest sites (S = 20). When 

comparing the overall reforested sites to the reference sites, it is observed that the 2010 reforested 

sites had a higher species richness (S = 36) then both the grassland and the forest reference sites 

and that the 2012 reforested site had a higher species richness (S = 21) then the forest reference 

site. The 2015 reforested sites had a much lower species richness (S = 17) then both reference 

sites. This suggests that the shift from the sugarcane vegetation type to the forest vegetation type 

has a positive impact on the species richness. 

 

The Margalef’s index values ranged between d = 2.38 and 5.32 and the Fisher α diversity 

index values ranged between α = 5.21 and α = 18.53. The highest species diversity and α values 

was observed in the 2010 reforested sites (d = 5.30 dry sites and 5.32 wet sites, α  = 16.21 dry 

sites, 18.53 wet sites) followed by the 2012 reforested sites (d = 2.87 dry sites and 4.86 wet sites, 

α  = 6.73 dry sites and 16.21 wet sites), while the 2015 reforested site had the lowest species 

diversity (d = 3.88 dry sites and 2.38 wet sites, α  = 18.17 dry sites and 5.12 wet sites). The 

grassland sites had a higher diversity α (d = 5.14, α = 11.98) then the forest sites (d = 4.57, α = 

9.99). A total of 39 morphospecies were present only in the reforested sites, 15 morphospecies 

were present only in the reference sites and 24 morphospecies that were present in both the 

reforested sites and reference sites. As the reforested sites get older, the species diversity within 

the sites increases. 

 

Most of these trends were further supported by the Shannons and Simpsons indices in terms 

of each sites’ abundance, richness, and diversity. However, both these indices ranked the 

Hemiptera community structure of the 2015 reforested sites (D = 0.89 dry sites and 0.81 wet sites, 

H = 2.51 dry sites, 1.93 wet sites) to be more diverse than 2012 reforested sites (D = 0.79 dry sites 

and 0.87 wet sites, H = 1.84 dry sites, 2.34 wet sites). This is unsurprising as the 2015 site has a 

well-established sugarcane vegetation type as compared to the intermediate changing phase from 

sugarcane into forest vegetation in the 2012 reforested site. 

 

When comparing the dry and wet sites within the reforested sites, the wet sites shows a slightly 

higher richness in the 2010 and 2012 reforested sites than the dry sites. However, the dry sites of 
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the 2015 reforested sites had a higher species richness and diversity (D = 0.89, H = 2.51) then the 

wet sites (D = 0.81, H = 1.93) suggesting that the species found within the 2015 reforested sites 

have adapted to the dry environment of the sugarcane and can survive within this vegetation type. 

The overall structure, vegetation, and diversity of the different ecological niches could have 

affected the variation in species diversity across the different reforested and reference sites.  

 

Table 3.2 Univariate models of biodiversity estimation indices for each sampling site based 

on BINs. S represents the total number of species present (richness), N represents the total number 

of individuals per a locality (abundance), d represents species diversity calculated from the 

Margalef’s diversity index, α represents Fisher’s α, indicating that the division of species per 

sampling locality, H’ represents Shannons index which estimates biodiversity richness and 

diversity and D represents Simpsons index which quantifies the biodiversity present at each 

locality. 

 2015 2012 2010   

 Dry Wet Overall Dry Wet Overall Dry Wet Overall Forest Grassland 

S 12 8 17 10 18 21 20 21 36 20 23 

N 17 19 36 23 33 56 36 43 79 65 72 

d 3.88 2.38 4.97 2.87 4.86 4.47 5.30 5.32 8.01 4.57 5.14 

α 18.17 5.21 12.59 6.73 16.21 12.20 16.21 18.53 25.55 9.99 11.68 

D 0.89 0.81 0.91 0.79 0.87 0.86 0.87 0.90 0.92 0.86 0.91 

H 2.51 1.93 2.64 1.84 2.34 2.53 2.55 2.66 3.03 2.44 2.72 

 

3.3.5 Ordination 

The non-metric multidimensional scaling (NMDS) ordination (Figure 3.4, Stress value = 

0.1794) and UPGMA clustering analysis (Figure 3.5) was performed using Bray-Curtis 

dissimilarity matrix between the different sites. The points of the ordination graph and the branches 
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on the cladogram were colour coded to differentiate between the different sampling sites. In 

Figures 3.4 and 3.5 there is a clear grouping of species collected from the different vegetation 

types, namely, the grassland (maroon), forest (pink) and the 2015 reforested sites which are still 

predominantly covered in sugarcane (green). PERMANOVA confirmed a significant difference in 

species composition among these three vegetation types (Table 3.2, p < 0.05).  

The NMDS ordination illustrates that the species composition from each of the reforested sites 

and references sites grouped together (Figure 3.4). A tight grouping was observed between the 

species found in the forest reference sites and the species found in the 2010 and 2012 reforested 

sites. These sites were found not to be significantly different from each other in terms of species 

composition (Table 3.3, p > 0.05). However, these sites are significantly different from the 2015 

reforested sites (Table 3.3, p < 0.05). These groupings highlight the strong influence that 

restoration efforts have made in the 2010 and 2012 reforested sites. In the 2015 reforested sites, 

species for the dry sites grouped together and species for the wet sites were grouped together 

highlighting a distinct difference between the species composition between each of these sites of 

different moisture content (Figures 3.4 and 3.5).  

The results obtained from Figures 3.4, 3.5 and Table 3.3 suggest that the species composition 

within the older reforested sites (2010 and 2012) have shifted towards a similar composition as the 

forest reference sites, indicating the effectiveness of the reforestation efforts being carried out in 

Buffelsdraai Landfill Site Community Reforestation Project. 
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Figure 3.4: Non-metric multidimensional scaling (nMDS) plots of the first 3 dimensions 

based on Bray-Curtis dissimilarities for the community composition of Hemiptera collected from 

2015 (green), 2012 (yellow), 2010 (blue), and the forest (pink) and grassland (maroon) reference 

sites. The stress value is 0.1794. 

Table 3.3: P-values derived from PERMANOVA pairwise comparisons of the different sites 

community composition within the Buffelsdraai landfill sites’ buffer zone using the Bray-Curtis 

dissimilarities values. The values highlight in bold are statistically significant (P < 0.05).  

  2010 2012 2015 Forest Grassland 

2010 - 0.40 0.030 0.95 0.028 

2012 0.40 - 0.032 0.18 0.027 

2015 0.030 0.032 - 0.032 0.028 

Forest 0.95 0.18 0.032 - 0.027 

Grassland 0.028 0.027 0.028 0.027 - 

 

 2015 Wet (Sugarcane) 
 2015 Dry (Sugarcane) 
 2012 Wet 
 2012 Dry 
 2010 Wet 
 2010 Dry 
 Forest 
 Grassland 

Key: 
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Figure 3.5: UPGMA cluster analysis of the Hemiptera communities for the different sampling 

sites in Buffelsdraai. The UPGMA clustering was based on Bray-Curtis dissimilarities matrix 

using the mean of the relative abundance of specimens for each locality.  

3.3.6 Phylogenetic analysis 

A total of 132 DNA sequences were available for phylogenetic analysis. The maximum 

likelihood (ML) tree clustered similar or putatively related individuals together (Figure 3.6). All 

values above 75% bootstrap (BS) were considered significantly supported and highlighted on the 

phylogeny. This phylogeny was midpoint rooted as no outgroup was included. The phylogeny 

represents 13 families and 48 genera. The mutation rate of the COI marker is appropriate to resolve 

species-level associations but our data suggests that this molecule may also be useful at higher 

taxonomic levels. Ten of the thirteen families present in the dataset were monophyletic and three 

of the families were either polyphyletic or paraphyletic. There is evidence of monophyly in the 

following families, however, in most of these families the branch support values were not very 

high supported (<75 % BS): Pentatomidae (BS = 56.4), Lygaeidae (BS = 30.2), Reduviidae (BS = 

21.5), Coreidae (BS = 5.6), Cicadellidae (BS = 64.4), Dictyopharidae (BS = 53.4), Eurybrachidae 

(BS = 99.9), Aphrophoridae (BS = 99.5), Tingidae, and Pyrrhocoridae (BS = 67.9). There is 

evidence of paraphyly in Fulgoridae and Cixiidae and polyphyly in Lophopidae. Overall it is 
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observed that majority of the families in the COI BINs dataset are monophyletic suggesting that 

the COI marker can resolve Hemiptera families relatively well. Thirty-six of the branches present 

within each family had well-supported bootstrap values.    

The ML tree was constructed to determine if there were any differences in the taxonomic 

coverage of the different Hemiptera families among the reforested sites (2010, 2012, and 2015) 

and reference sites (forest and grassland). Fulgoridae, Cixiidae, Dictyopharidae, Aphrophoridae, 

and Tingidae are underrepresented throughout the ML tree and conclusions as to whether they are 

a good biological indicator species are unclear. Further sampling of these families need to be done 

to test their habitat specificity. Pentatomidae, Lygaeidae, Cicadellidae, and Pyrrhocoridae are not 

good indicator species as these families are well represented throughout the different reforested 

and reference sites. This indicates that these families are not habitat specific and cannot be used as 

biological indicator species for reforestation. In contrast, Reduviidae, Coreidae, Lophopidae, and 

Eurybrachidae are good biological indicator species as they are not well represented throughout 

the different reforested and reference sites. These families are either absent (Reduviidae and 

Lophopidae) or underrepresented (Coreidae and Eurybrachidae) within the 2015 reforested site 

which is predominately covered in sugarcane. These families are habitat specific to either 

grassland or forest vegetation types making them good biological indicators for this study. 

Coreidae and Eurybrachidae are forest-specific families as they are predominately found within 

the 2012 reforested site, 2010 reforested site and the forest reference site, making them good 

biological indicators for assessing the progress of reforestation.  
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Figure 3.6: Most likely tree of 117 representative (BINs) Hemiptera specimens using their COI sequence data. The branches of the 

tree are colour coded by family. Only significantly supported branch support values (bootstrap value > 75%) are shown. Sampling sites 

are colour coded by the diamond shapes.
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3.4 Discussion  

Ecological habitat restoration is a process whereby a degraded ecosystem is altered and 

revived to a state in which it becomes resilient to environmental change and disturbances (Clewell 

& Aronson 2007). The aim of this study was to determine if Hemiptera could be a good indicator 

taxon for tracking the progress of restoration. What makes this study unique is that DNA barcoding 

was used for reliable species identification of cryptic species and species at different 

developmental stages. It was also useful to determine what families of Hemiptera are useful 

biological indicator species. 

3.4.1 How does species richness and diversity of Hemiptera respond during ecological 

habitat restoration? 

In this study, species richness, abundance, and diversity was linked to ages of the reforested 

patches (2010, 2012, and 2015), vegetation type (forest and grassland) and moisture content (wet 

versus dry). This supports the findings of previous studies using other invertebrate taxa such as 

Coleoptera (Parmenter & Macmahon 1987) and Orthoptera (Parmenter et al. 1991), which have 

shown an increase in species richness and diversity during ecological reforestation. The 2015 

reforested site is seen to have a lower number of species richness, diversity and abundance as 

compared to the 2012 and 2010 reforested sites. This notion suggests that the plants that arthropods 

are attracted to are grassier, and are more densely populated vegetation types which are shifting 

towards forest plant cover and away from the sugarcane vegetation type. On a whole, the results 

which indicated a shift in Hemiptera species assemblage from the sugarcane vegetation type to the 

forest vegetation type are consistent with those of Moir et al. (2005). Moir et al. (2005) found 

similar Hemiptera species richness values between the restored sites and the native forest. This 

further supports the data in this study which suggests that Hemiptera species richness, abundance 

and diversity is affected by the different vegetation types.  

3.4.2 How does species composition of Hemiptera change during ecological habitat 

restoration? 

Over time, as the reforested habitat matures, there is a distinctive change in the species 

composition. The results obtained from this study are consistent with other studies that have 

selected Hemiptera as useful biological indicators to track restoration success and changes (Moir 
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et al. 2005; Orabi et al. 2010). Despite examining the reforestation project within the Buffelsdraai 

Landfill Site’ buffer zone over such a short time, the ordination, UPGMA clustering and 

phylogenetic analyses highlight a significant change in the species composition as the reforested 

sites shift from a predominantly sugarcane vegetation type towards the forest vegetation type. 

There is a clear clustering of the Hemiptera species composition and assembly between the 2012 

and 2010 reforested sites and the forest reference sites. This highlights the success of the 

reforestation project currently being carried out within the Buffelsdraai Landfill Site Community 

Reforestation Project. 

There is also evidence of clear clustering of the species composition and assemblage of 

Hemiptera in the different vegetation types (forest, grassland, and sugarcane), suggesting that the 

vegetation structure directly influences species composition. This correlates to findings from other 

studied which reveal that both plant species composition and vegetation structure can strongly 

effect Hemipteran species composition and assemblage (Sanderson et al. 1995; Hartley et al. 2003; 

Moir et al. 2005; Orabi et al. 2010).  

3.4.3 Is the use of DNA barcoding and Hemiptera as suitable biological indicators to 

track the success of ecological restoration useful?  

In this study, several Hemiptera species were specific to the different vegetation types (forest, 

grassland, and sugarcane). This provides evidence for the potential of this group to be biological 

indicators. Hemiptera are seen to be sensitive to changes in an ecosystem which makes this order 

an effective environmental and biological indicator. With the help of DNA barcoding, Reduviidae, 

Coreidae, Lophopidae, and Eurybrachidae were identified as good biological indicators for this 

study. These families were habitat specific to either grassland or forest enabling them to be good 

biological indicator species to understand and assess the progress of ecological reforestation. The 

results from this study remain consistent with other studies done on Hemiptera which highlight the 

use of this order as an effective biological indicator in ecological habitat restoration and their 

response to ecosystem changes and disturbances (Moir et al. 2005; Orabi et al. 2010). The use of 

Hemiptera in conjuncture with DNA barcoding is a cost-effective way to study changes in 

ecological habitat restoration, as DNA barcoding helps to rapidly identify large numbers of 

Hemiptera and overcome any taxonomic impediment. DNA barcoding in this study was proven to 

be an efficient and effective tool for the identification of cryptic species and Hemiptera at different 
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developmental stages which were impossible to identify or to associate with the corresponding 

adult’s forms. The results obtained from this identification tool allowed for meaningful 

comparisons to be made between the different reforested and reference sites within the 

Buffelsdraai landfill sites’ buffer zone.  

3.5 Conclusion 

This study highlights the importance of multivariate analysis, biological indicator species-

based approaches and molecular approaches to monitor the success of ecological habitat 

restoration. In this study, it is seen that Hemiptera can be used as a cost effective biological 

indicator as it has the potential to provide a high information content. The distinctive clustering of 

the species composition between the forest reference site and the 2012 and 2010 reforested sites 

suggest that the ecological reforestation project being carried out at Buffelsdraai Landfill Site 

Community Reforestation Project is successful.  
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Chapter Four 

General discussion 

When DNA barcoding was first proposed 13 years ago, as a means of identifying species 

based on DNA sequences, very few biologists anticipated the impact DNA barcoding would have 

on the field of ecology, evolution, conservation, and biogeography. During my MSc study, I 

explored the utility of DNA barcoding and provided a way of testing the accuracy of using a single 

mitochondrial COI gene as a standardized marker to identify Hemiptera. In addition, I examined 

the Buffelsdraai Landfill Site Community Reforestation Project as a case study to further 

understand the utility of DNA barcoding in restoration ecology and the use of Hemiptera as a 

biological indicator species. 

In chapter one, I highlighted the negative impacts of urbanization on biodiversity and the 

importance of species identification to create biodiversity inventories. I provided an overall review 

of DNA barcoding and its usefulness in assisting with species identification. DNA barcoding is 

used all around the world, however, most of the studies which involve this technique focus on taxa 

found in Europe and America, with very few studies focusing on the African continent. DNA 

barcoding can be used as a valuable tool for African systematics due to the current taxonomic 

impediment and lack of taxonomic knowledge on Africa taxa. This study focused on South African 

Hemiptera, more specifically Hemiptera collected from the eThekwini region and surrounding 

areas.  

In chapter two, I demonstrated the utility of DNA barcoding and the mitochondrial COI gene 

to accurately identify Hemiptera species. A preliminary DNA barcode reference library was 

created for the Hemiptera collected from the eThekwini region and surrounding areas. This 

reference library currently consists of 1456 specimens from 357 putative species and 256 

morphospecies, sampled from 18 geographic localities within and around the eThekwini region. 

Using molecular data and statistically supported data, high species richness and diversity were 

recorded in the University of KwaZulu-Natal (Pietermaritzburg campus), Drummond, Springside 

Nature Reserve, Iphithi Nature Reserve, and Palmiet Nature Reserve. In contrast, the lowest 

species richness and diversity was recorded in Bartlett Estate, High Meadows, Vernon Crookes, 

Hazelmere Dam, and Paradise Valley. The preliminary reference library was also used to compare 
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the matches between morphospecies and BINs. There is strong coherence seen between the 

number of BINs and morphospecies recorded at most localities, suggesting that the DNA barcode 

data can be used as a reliable tool for rapidly identifying species. However, there was a mismatch 

of BINs and morphospecies recorded at some localities, these mismatches are due to either cryptic 

speciation or the presence of Hemiptera at different developmental stages. This suggests that these 

two methods should be used as complementary tools to one another to achieve more accurate 

results. In this chapter, I also tested for the presence of the DNA barcode gap, which was computed 

by the K2P and GTR+I+G nucleotide substitution models of evolution on datasets containing COI 

sequences sorted into morphospecies and genetic clusters (BINs). A degree of overlap was seen 

between the intraspecific and interspecific classes on both data sets using the different models of 

evolution. However, the use of the Jeffries-Matusita (J-M) distance indicated that there was a 

statistically significant barcode gap. This suggests that DNA barcoding is effective in Hemiptera 

species identification. Through phylogenetic analysis, the mitochondrial COI gene was observed 

to resolve above the species level providing support for Hemiptera families and genera, which 

further highlights the effectiveness of this marker when working with Hemiptera. 

In chapter three I turned my attention to the Buffelsdraai Landfill Site Community 

Reforestation Project. The aim of this study was to determine whether Hemiptera can be used as 

biological indicators to track the progress of restoration. This was done by comparing species 

diversity, richness, and composition of Hemiptera species collected from sites which were 

reforested at distinct phases in the years 2015, 2012 and 2010. The Hemiptera from these sites 

were compared to native grassland and forest sites. DNA barcoding was used to identify Hemiptera 

species. A total of 393 specimens were collected from 20 different sites within the Buffelsdraai 

region. Once the 393 specimens were sorted into morphospecies, a maximum of 5 individuals were 

selected for DNA analysis. The DNA barcode reference library for this case study currently 

consists of 132 specimens from 119 putative species and 117 morphospecies. The morphospecies 

data and genetic data generated was used to assess the Hemiptera species richness and diversity 

across the different reforested sites (2015, 2012 and 2010) and the reference sites (grassland and 

forest) within the Buffelsdraai landfill sites’ buffer zone. The highest species richness and diversity 

was recorded in the 2010 reforested site followed by the 2012 and 2015 reforested sites. When 

comparing the reforested sites to the reference sites, the 2010 reforested sites had a higher species 

richness and diversity then both the grassland and forest reference site. This was due to three 
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confounding factors, however, one of these factors was due to the presence of introduced 

Hemiptera species in the 2010 reforested site. These introduced species included Clavigralla 

horrida (family Coreidae), Zicrona caerulea (family Pentatomidae), and Spilostethus pandurus 

(family Lygaeidae), which are native to Costa Rica and are known to be invasive species all around 

the world (Kaufman et al. 1929). This study assessed reforestation over a period of 6 years (2010 

– 2015). Despite this short period of time, the results obtained from the ordination, UPGMA 

clustering and phylogenetic analyses displayed a significant clustering of species composition of 

the 2012 and 2010 reforested sites with the forest reference site. This is due to the shift from the 

sugarcane vegetation type to a forest vegetation type within the reforested plots. This highlights 

the success of the reforestation project being carried out within the Buffelsdraai Landfill Site 

Community Reforestation Project. This data also suggests that Hemiptera are reliable biological 

indicators to track the success of ecological restoration, as they are seen to be sensitive to 

environmental changes and disturbances. With the help of DNA barcoding four Hemiptera families 

namely; Reduviidae, Coreidae, Lophopidae, and Eurybrachidae were identified as good biological 

indicators for this study. This case study highlighted the importance of multivariate analysis, 

biological indicator species based approaches and molecular techniques to monitor the success of 

ecological restoration. 

Overall, this study supports DNA barcoding as an exceptional tool and some of its advantages 

have been mentioned throughout this thesis. DNA barcoding can be used to perform large-scale 

screening of biodiversity and allow for a detailed investigation at different spatial scales. 

Furthermore, when DNA barcoding is coupled with traditional morphology-based taxonomy it has 

the potential to provide insight into biodiversity and taxonomic studies. The techniques and 

methods of analyses used in this study could be applied to building DNA barcode libraries for 

other organisms, not only in the eThekwini region but for the rest of South Africa. Thus, 

contributing to the barcode of life initiative to catalogue all of Earth’s biodiversity. Only history 

will tell if DNA barcoding succeeds in advancing and improving research on biodiversity and in 

fostering close collaborations between barcoders and taxonomists to help overcome the current 

taxonomic impediment.  
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