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Abstract

Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice

stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in

a persistent propagative manner. The midgut and salivary glands of SBPH are the first and

last barriers to the viral circulation and transmission processes, respectively; however, the

precise mechanisms used by RSV to cross these organs and transmit to rice plants have

not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-

tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Fur-

thermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo

and bound NS3 at positions 74–76 and 80–82 in vitro. Transient gene silencing of LsTUB

expression caused a significant reduction in detectable RSV loads and viral NS3 expression

levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect

cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and

decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG)

showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduc-

tion in RSV transmission rates was likely caused by a decrease in viral loads inside the

planthopper. These findings suggest that LsTUB mediates the passage of RSV through

midgut and salivary glands and leads to successful horizontal transmission.

Author summary

Over 70% of all known plant viruses are transmitted by specific arthropods, mainly

including planthoppers, leafhoppers, aphids and whiteflies. Plant viruses with persistent

relationships must overcome multiple barriers. Among these barriers, midgut and salivary

glands are first and last barriers to the viral transmission. The interactions of host factors

and virus in the insect midguts and salivary glands provide critical information regarding

viral spread in the insect vector and subsequent infection of host plants. However, the

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008710 August 20, 2020 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li Y, Chen D, Hu J, Zhang K, Kang L,

Chen Y, et al. (2020) The α-tubulin of Laodelphax

striatellus mediates the passage of rice stripe virus

(RSV) and enhances horizontal transmission. PLoS

Pathog 16(8): e1008710. https://doi.org/10.1371/

journal.ppat.1008710

Editor: James Ng, University of California, UNITED

STATES

Received: March 2, 2020

Accepted: June 17, 2020

Published: August 20, 2020

Copyright: © 2020 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the National

Natural Science Foundation of China (No.

31801732 and 31701786), the National Natural

Science Foundation of China (No. 3117184), and

the Jiangsu Agricultural Scientific Self-innovation

Fund [No. CX(18)3057]. The funding agencies had

no role in study design, data collection, analysis, or

preparation of the manuscript.

http://orcid.org/0000-0002-1907-6019
https://doi.org/10.1371/journal.ppat.1008710
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1008710&domain=pdf&date_stamp=2020-08-20
https://doi.org/10.1371/journal.ppat.1008710
https://doi.org/10.1371/journal.ppat.1008710
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


precise mechanisms is still lacking. Here, we found that the specific interaction between a

α-tubulin 2 of Laodelphax striatellus (SBPH) (LsTUB) and a nonstructural protein 3

(NS3) Rice stripe virus (RSV) mediates the passage of RSV through midgut and salivary

glands, thereby leading to successful horizontal transmission. Our results confirm novel

functions of LsTUB and NS3 in RSV transmission in insect vector. LsTUB may be a prom-

ising target for blocking horizontal transmission of RSV. These insights provide a better

understanding of the interaction between plant viruses and vectors and may develop

novel methods to control the systemic spread of plant viruses.

Introduction

The survival of plant viruses is largely dependent on the efficient transmission to plant hosts

by virus-specific vectors [1, 2]. Over 70% of all known plant viruses are transmitted by insects,

and approximately 55% are vectored by Hemipteran insects (e.g. leafhoppers, planthoppers,

aphids and whiteflies) [3]. These insects have distinctive piercing-sucking mouthparts with

needle-like stylet bundles that are comprised of two maxillary and two mandibular stylets,

making insect more suitable for virus transmission [3–5]. Four categories of insect vector—

plant virus transmission relationships have been described as follows: nonpersistent; semiper-

sistent; persistent circulative and persistent propagative [2, 6]. Plant viruses with persistent

relationships enter vectors via the alimentary canal during feeding. After traversing several key

tissues, these viruses eventually enter the salivary glands, which consist of principal and acces-

sory glands. Furthermore, some even enter ovaries, which is another type of terminal insect tis-

sue. In the principal salivary glands, viral particles are released into insect saliva when the

vector is probing the host plant. In the ovaries, viruses are vertically transmitted to offspring

[7]. Barriers to the persistent transmission of plant viruses in insect vectors include the follow-

ing: (i) midgut infection barriers; (ii) dissemination barriers, including midgut escape and sali-

vary gland infection barriers; (iii) salivary gland escape barriers; and (iv) transovarial

transmission barriers [8, 9]. A deeper understanding of the mechanistic basis of virus trans-

mission through these four barriers will facilitate the development of novel methods to control

the systemic spread of plant viruses.

Previous studies demonstrated that the persistent transmission of viruses in different insect

tissues requires specialized interactions between components of the virus and vector [10]. For

example, in the aphid Myzus persicae, the coat protein read-through domain (CP-RTD) of

Beet western yellows virus bound Rack-1 and membrane-bound glyceraldehyde-3-phosphate

dehydrogenase to facilitate transcytosis of luteoviruses in the aphid midgut and accessory sali-

vary glands [11]. The coat proteins of Tomato leaf curl New Delhi virus and Cotton leaf curl
Rajasthan virus were shown to interact with a Bemisia tabaci midgut protein to facilitate traf-

ficking of viral particles from the midgut into the insect hemolymph [12]. Furthermore, the

Rice ragged stunt virus nonstructural protein Pns10 interacted with the Nilaparvata lugens oli-

gomycin-sensitivity conferring protein to enhance viral titer in salivary gland cells [13]. Such

interactions in different insect vectors are highly complex and diverse, and their effects on the

horizontal transmission of viruses remain unclear.

Rice stripe virus (RSV, genus Tenuivirus of the Phenuiviridae family) has inflicted severe

yield losses in rice throughout East Asia [14, 15]. RSV is transmitted by the small brown

planthopper (SBPH), Laodelphax striatellus, in a persistent, circulative-propagative manner.

The genome of RSV consists of four single-stranded, negative sense (ambisense) RNA mole-

cules encoding the following seven proteins: RNA-dependent RNA polymerase (RdRP), RNA
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silencing suppressor with an unknown function (NS2), putative membrane glycoprotein

(NSvc2), RNA silencing suppressor (NS3), nucleocapsid protein (CP), nonstructural disease-

specific protein (NS4) and movement protein (NSvc4) [16–22]. Among these proteins, non-

structural protein NS3 functions as a gene-silencing suppressor in plants and functions in the

size-independent and noncooperative recognition of dsRNA in plants [22, 23]; however, the

role of NS3 in the insect vector, SBPH, has not been elucidated.

RSV particles initially establish infection in the midgut epithelium, then disseminate to the

midgut visceral muscles, and ultimately enter the SBPH salivary glands before the virus can be

transmitted to rice plants along with saliva [24]. Recently, molecular interactions between RSV

and various SBPH tissues have received increased attention [25]. In the midgut, a direct inter-

action between NS4 and RSV CP promoted viral spread in viruliferous SBPH [24]. Further-

more, the interaction between the SBPH sugar transporter 6 (LsST6) and RSV CP was shown

to be essential for RSV transfer across the midgut infection barrier [26], whereas the interac-

tion between RSV CP and SBPH vitellogenin (LsVg) facilitated vertical transmission of the

virus [27]. Further work revealed that LsVg expression was tissue-specific, and that LsVg pro-

duced in hemocytes was responsible for vertical transmission of RSV [28]. We previously

reported that RSV was horizontally transmitted to rice plants via salivation during the feeding

of insect vectors [29]. A series of salivary gland-specific transcriptome and proteome analyses

revealed numerous genes involved in RSV transmission [30, 31]; however, only cuticular pro-

tein (CPR1) and a G protein pathway suppressor 2 (GPS2) impacted RSV transmission and

replication in salivary glands [31, 32]. Obviously, the mechanism that RSV uses to overcome

the salivary gland barrier and then undergo horizontal transmission to the plant warrants fur-

ther investigation.

In the present study, proteomic analysis revealed that α-tubulin (TUB) was highly expressed

in viruliferous SBPH compared to non-infected SBPH, suggesting that L. striatellus TUB

(LsTUB) may have a role in mediating RSV transmission. Our data show that LsTUB facili-

tated the passage of RSV through the midgut and salivary gland barriers and enhanced viral

transmission from SBPH to rice plants. Yeast two-hybrid and pull-down assays provided evi-

dence that the interaction of LsTUB and the RSV NS3 likely constitutes a critical step in RSV

transmission.

Results

cDNA cloning and sequence analysis of LsTUB
Proteomic analysis of SBPH salivary glands identified 33 differentially expressed proteins in

viruliferous and non-infected SBPH, including LsTUB (Table 1). Because tubulin heterodi-

mers are known to function in viral assembly and transport [33–35], a full-length cDNA

sequence of LsTUB (1,658 bp, GenBank accession no. KF934411) was cloned from female

SBPH adults, using the conserved sequence of Tubulin α-2 from NCBI (GenBank accession

no. AY550922.1) as an in silico probe. LsTUB contains a 1,353-bp open reading frame encod-

ing a putative protein of 450 amino acids, a 93-bp 5’ untranslated region (UTR), and a 212-bp

3’ UTR. The translated cDNA of LsTUB yields a protein with a mass of approximately 50.0

kDA, and theoretical isoelectric point (pI) of 5.01. SMART analysis showed that LsTUB con-

tains two conserved domains, including a GTPase domain (amino acids 49–246) with a GDP-

binding site (amino acids 142–147) and a C-terminal domain (amino acids 248–393) (Fig 1A).

Alignment of the LsTUB predicted protein sequence with other TUB proteins indicated a high

level of identity with Hemipteran TUB proteins, including NlTUB in N. lugens (GenBank

accession no. ANJ04673.1, 100% identity) and LlTUB in Lygus lineolaris (GenBank accession

no. AHG54247.1, 99% identity) (Fig 1B).
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Table 1. Differentially expressed proteins identified from proteomic analysis of salivary glands of viruliferous and non-infected SBPH.

Accession

no.

Protein names Gene names Organism Identity score Coverage

(%)

Changes expression

levels

P15577 NADH-ubiquinone oxidoreductase chain 2 ND2 Paramecium tetraurelia 26.0% 118 3.74 Up-regulated

P84050 Histone H4 His4 Rhodnius prolixus 100.0% 524 5.06 Up-regulated

Q9VTN3 Mitochondrial import inner membrane translocase

subunit Tim13

Tim13 Drosophila
melanogaster

76.0% 167 15.56 Up-regulated

P18101 Ubiquitin-60S ribosomal protein L40 precursor RpL40 Drosophila
melanogaster

100.0% 401 19.05 Up-regulated

Q9VTN3 Mitochondrial import inner membrane translocase

subunit Tim13

Tim13 Drosophila
melanogaster

76.0% 167 15.56 Up-regulated

Q9VTN3 Mitochondrial import inner membrane translocase

subunit Tim13

Tim13 Drosophila
melanogaster

76.0% 167 15.56 Up-regulated

Q9VTN3 Mitochondrial import inner membrane translocase

subunit Tim13

Tim13 Drosophila
melanogaster

76.0% 167 15.56 Up-regulated

Q4GXP3 Ribosomal protein S21 Riptortus pedestris 90.0% 267 19.77 Up-regulated

P06754 Tropomyosin 1 Laodelphax striatella 99.0% 316 28.95 Up-regulated

P06605 Tubulin alpha-2 chain Tubulin α-2 Drosophila
melanogaster

100.0% 457 47.83 Up-regulated

Q16P20 Probable citrate synthase 2, mitochondrial precursor Aedes aegypti 87.0% 228 31.25 Up-regulated

G8CV15 Glyceraldehyde-3-phosphate dehydrogenase GAPDH3 Laodelphax striatella 100.0% 168 17.72 Up-regulated

P27634 Elongation factor 1-alpha (EF-1-alpha) (Fragment) Rhynchosciara
americana

99.0% 445 14.63 Up-regulated

Q24251 ATP synthase subunit d, mitochondrial ATPsyn-d Drosophila
melanogaster

46.0% 212 38.82 Up-regulated

Q1ZZQ2 ACYPI000034 protein ACYPI000034 Acyrthosiphon pisum 71.0% 148 22.22 Up-regulated

Q9VTP4 60S ribosomal protein L10a-2 RpL10Ab Drosophila
melanogaster

85.0% 283 30.68 Down-regulated

P35381 ATP synthase subunit alpha, mitochondrial

precursor

blw Drosophila
melanogaster

46.0% 320 13.92 Down-regulated

P06605 Tubulin alpha-3 chain Tubulin α-3 Drosophila
melanogaster

100.0% 457 60.87 Down-regulated

Q94514 Cytochrome c oxidase subunit 5A, mitochondrial CoVa Drosophila
melanogaster

67.0% 269 48.24 Down-regulated

P62925 Eukaryotic translation initiation factor 5A eIF-5A Spodoptera frugiperda 78.0% 405 58.62 Down-regulated

Q9V3P0 Peroxiredoxin 1 Jafrac1 Drosophila
melanogaster

79.0% 168 22.09 Down-regulated

P29310 14-3-3 protein zeta 14-3-3zeta Drosophila
melanogaster

98.0% 254 21.59 Down-regulated

Q94920 Voltage-dependent anion-selective channel porin Drosophila
melanogaster

60.0% 252 39.29 Up-regulated

Q4UM09 NADH-quinone oxidoreductase subunit E nuoE Rickettsia felis 65.0% 280 16.05 Down-regulated

B0UE41 ATP synthase subunit alpha atpA Methylobacterium sp. 90.0% 315 13.92 Down-regulated

P06603 Tubulin alpha-1 chain Tubulin α-1 Drosophila
melanogaster

100.0% 457 47.83 Up-regulated

M9V250 Glutamine synthetase 2 GS2 Nilaparvata lugens 91.0% 300 39.29 Down-regulated

P35381 ATP synthase subunit alpha, mitochondrial

precursor

blw Drosophila
melanogaster

90.0% 416 13.92 Down-regulated

P35381 ATP synthase subunit alpha, mitochondrial

precursor

blw Drosophila
melanogaster

90.0% 416 13.92 Up-regulated

P35381 ATP synthase subunit alpha, mitochondrial

precursor

blw Drosophila
melanogaster

90.0% 416 13.92 Up-regulated

Q6LHK5 NAD-dependent malic enzyme 2 Acyrthosiphon pisum 100.0% 815 2.84 Up-regulated

Q6LHK5 Malic enzyme Acyrthosiphon pisum 100.0% 815 2.84 Up-regulated

(Continued)
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RSV infection in SBPH increases LsTUB expression

To further evaluate differential expression of LsTUB in viruliferous vs. non-infected SBPH,

qRT-PCR and Western blot analyses were conducted to quantify its mRNA and protein

expression levels, respectively. The mRNA expression levels of LsTUB were significantly up-

regulated in viruliferous SBPH (Fig 2A). The trend in protein expression was consistent with

changes in gene expression as determined by immunoblotting with anti-LsTUB antisera (Fig

2B, S1 Fig).

LsTUB co-localizes with RSV in different SBPH tissues

Since LsTUB was expressed at higher levels in response to RSV infection in viruliferous SBPH,

we investigated whether they were co-localized in SBPH organs. Confocal imaging revealed

that LsTUB and RSV CP were co-localized (see arrows, Fig 3A’–3D”’, S1 Table) in midgut (Fig

3A–3A”’), hemocytes (Fig 3B–3B”’) and principal salivary glands (Fig 3C–3C”’). The results

indicate that LsTUB and RSV accumulate and co-localize throughout the SBPH body.

LsTUB interacts with RSV NS3 in vitro
The interaction between LsTUB and RSV NS3. LsTUB was used as bait and a RSV

cDNA library as prey in a yeast-two-hybrid (Y2H) assay designed to identify RSV proteins

that potentially interact with LsTUB. After screening, RSV NS3 was found to interact with

LsTUB in the Y2H assay (Fig 4A, S2 Fig). The expression of LsTUB and RSV NS3 in yeast was

confirmed by Western blot analysis (Fig 4B). To further examine the interaction between

LsTUB and RSV NS3, a pull-down assay was performed with glutathione S-transferase-tagged

LsTUB (GST-TUB). When the extracts from viruliferous SBPH were incubated with

GST-TUB, NS3 co-immunoprecipitated with GST-TUB as shown by Western blot analysis

(Fig 4C).

The interaction between LsTUB and other viral proteins. Considering that other RSV

proteins may also bind LsTUB, we evaluated whether LsTUB could interact with four RSV

proteins (e.g. NSvc2, CP, SP and NSvc4) using Y2H analysis. Yeast strains containing full-

length LsTUB as bait and each of the four proteins as prey failed to grow on synthetic dextrose

dropout medium (S3 Fig). This result suggests that the interaction between LsTUB and NS3 is

specific.

The binding site of LsTUB and RSV NS3. To determine the amino acid region of NS3

responsible for the interaction with LsTUB, we conducted Y2H analysis with three truncated

mutants of NS3, including RSV NS3 1-64aa, RSV NS3 65-108aa, and RSV NS3 109-211aa (Fig

4D). Only one yeast strain harboring the truncated mutant RSV NS3 65-108aa and LsTUB

grew, indicating a weak interaction (Fig 4E). The RSV NS3 65-108aa was then divided into the

N-terminal fragment (RSV NS3 65-85aa) and C-terminal fragment (RSV NS3 86-108aa) (Fig

4D). Positive interactions existed between the RSV NS3 65-85aa and LsTUB (Fig 4E). Further-

more, seven NS3 mutants with an alanine-substitution mutation in the NS3 65-85aa region

were generated and used to transform the yeast strain along with LsTUB (Fig 4D). When

amino acid residues at positions 74–76 or positions 80–82 were substituted with alanine (RSV

Table 1. (Continued)

Accession

no.

Protein names Gene names Organism Identity score Coverage

(%)

Changes expression

levels

Q7KN62 Transitional endoplasmic reticulum ATPase TER94 TER94 Drosophila
melanogaster

80.0% 176 44.32 Down-regulated

https://doi.org/10.1371/journal.ppat.1008710.t001
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NS3 mut SFL74-76AAA, RSV NS3 mut IWI80-82AAA), the interaction between NS3 and LsTUB

was abolished (Fig 4E). These results reveal that the amino acid residues at positions 74–76

and 80–82 of NS3 are required for the interaction between LsTUB and RSV NS3.

The interaction of LsTUB and RSV NS3 has no effect on silencing suppressor activity.

To determine whether the interaction of LsTUB and RSV NS3 would affect the latter’s silenc-

ing suppressor activity, we carried out a GFP (green fluoresce protein) silencing assay by tran-

sient ectopic expression of NS3 and its substitution mutants in Nicotiana benthamiana leaves.

The results from the GFP silencing assay for the two mutants screened above showed that the

substitutions of NS3 amino acids at positions 74–76 and 80–82 led to loss of their silencing

suppressor ability as previously reported [36] (Fig 5A). However, leaves co-transfected with

pBin438-NS3 and pBin438-LsTUB (see Methods) also exhibited high levels of GFP expression,

and expression levels were similar to those in leaves transfected with pBin438-NS3 or the posi-

tive control (pBin438-P19) (Fig 5B). The expression of NS3 and LsTUB in N. benthamiana
was verified by Western blot analysis (Fig 5C). These results clearly demonstrate that the pres-

ence of LsTUB has no effect on the silencing suppressor activity of RSV NS3 that would affect

viral infection and accumulation.

Fig 1. LsTUB protein structure and amino acid alignment. (A) Schematic representation of LsTUB. (B) Deduced

amino acid sequence alignments of TUB in seven insect species; alignments were constructed using ClustalW software.

Green shading indicates conserved tubulin residues in seven insect species; red or yellow shading indicates species-

specific residues. Abbreviations indicate tubulin from the following insect species: LsTUB, Laodelphax striatellus;
NlTUB, Nilaparvata lugens; LlTUB, Lygus lineolaris; NcTUB, Nephotettix cincticeps; BtTUB, Bombus terrestris;
DmTUB, Drosophila melanogaster; and BgTUB, Blattella germanica.

https://doi.org/10.1371/journal.ppat.1008710.g001

Fig 2. mRNA and protein expression levels of LsTUB in non-infected and viruliferous SBPH. (A) qRT-PCR analysis of LsTUB expression

in 50 non-infected and RSV-infected SBPH adults. Treatments were replicated three times. (B) Western blot analysis of LsTUB production in

50 non-infected and viruliferous SBPH adults. GAPDH was used as control. Histogram in lower panel of (B) shows the relative intensity of

bands in gels. Means ± SE, t-test analysis: ���P<0.001.

https://doi.org/10.1371/journal.ppat.1008710.g002
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Silencing of LsTUB via RNAi reduces NS3 protein levels and RSV loads in
vivo
To further explore the potential role of LsTUB in NS3-mediated transmission of RSV, 3rd

instar viruliferous SBPH nymphs were supplied with 0.5 mg/ml dsRNAs derived from GFP
(dsGFP) or LsTUB (dsTUB) via membrane feeding. After seven days of feeding, qRT-PCR

analysis showed that LsTUB mRNA in dsTUB-treated SBPHs was significantly reduced by

more than 75% compared to the controls (untreated and dsGFP-treated SBPHs) (S4 Fig).

These results indicate that RNAi-mediated knockdown of LsTUB is highly effective.

Fig 3. Localization of LsTUB and RSV in different tissues of SBPH. Detection of LsTUB antigen and RSV coat protein (CP) antigen in (A) midgut, (B) hemocytes,

and (C) salivary glands of 30 viruliferous adults. Anti-LsTUB and anti-RSV CP monoclonal antibodies were detected using Alexa Fluor 555 (red) or 488 (green) labeled

secondary antibodies, respectively. Panels A-A”’ and C-C”’, bar = 100 μm; panels B-B”’ and D-D”’, bar = 50 μm. Abbreviations: sg, salivary glands; psg, principal salivary

glands; vm, visceral muscle; and me, midgut epithelium.

https://doi.org/10.1371/journal.ppat.1008710.g003
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The midgut and salivary glands of viruliferous SBPHs were also examined by immunoblot-

ting and confocal microscopy. Immunoblotting showed that application of dsTUB led to a

decrease in LsTUB in both midgut and salivary glands, accompanied by a decrease in

RSV-NS3 (Fig 6A & 6B, S5 Fig). Immunofluorescence and qRT-PCR indicated that dsTUB

Fig 4. The interaction between LsTUB and RSV NS3 detected by yeast two-hybrid assay and GST pull-down assay. (A) Interactions between LsTUB and RSV NS3

proteins identified by yeast two-hybrid assays. Yeast cells were diluted 10−1 to 10−4 and plated onto QDO (SD-trp-leu-his-ade-20 mM3-AT) medium. Colonies growing

on QDO were also assayed for β-galactosidase activity (blue color). Controls: AD-T + BD-53 (positive control); or AD-LsTUB + BD or AD + BD-RSV NS3 (negative

control). Abbreviations: AD, activation domain, cloned in pGADT7; BD, bait domain, cloned in pGBKT7; LsTUB, Laodelphax striatellus, tubulin; NS3, nonstructural

protein 3. (B) Western blot analysis of RSV NS3 and LsTUB in yeast strain Y2H Gold. (C) GST pull-down assays. LsTUB was fused to GST and incubated with

viruliferous SBPH extracts or GST (control). Blots were probed with anti-NS3 or anti-GST antibodies. Insect suspension obtained from 50 viruliferous adults (femal/male

ratio = 1:1), + means input,—means no input. (D) The schematic diagram of the wild-type RSV NS3 and 12 mutated RSV NS3 constructs. Five truncated mutants of NS3,

including RSV NS3 1-64aa, RSV NS3 65-108aa, RSV NS3 109-211aa, RSV NS3 65-85aa and RSV NS3 86-108aa. Seven NS3 mutants with an alanine-substitution

mutation, including RSV NS3 mut GPD65-67AAA, RSV NS3 mut DAV68-70AGA, NS3 mut TLG71-73AAA, NS3 mut SFL74-76AAA, NS3 mut KTL77-79AAA, NS3 mut IWI80-

82AAA and NS3 mut LSH83-85AAA. (E) Interactions between LsTUB and mutated RSV NS3 proteins in yeast two-hybrid assays. Controls: AD-T + BD-53 (positive control)

or AD-T + BD-Lam (negative control).

https://doi.org/10.1371/journal.ppat.1008710.g004
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treatment caused a substantial reduction in RSV loads in the midgut and salivary glands. Fur-

thermore, LsTUB and NS3 were co-localized in tissues treated with dsGFP (see arrows), but

not in tissues treated with dsTUB (Fig 6C–6F”’). Taken together, these results indicate that the

interaction of LsTUB and NS3 is essential for RSV accumulation in the insect vector.

Repression and overexpression of LsTUB do not affect RSV replication in

SBPH cells

We examined whether the LsTUB-dependent decrease in RSV loads would affect viral replica-

tion in the insect. LsST6-expressing Spodoptera frugiperda 9 (Sf9) cells [26] were transfected

with LsTUB and changes in RSV infection and replication were evaluated. At 1, 6, 12 and 24 h

following RSV infection, RSV loads and NS3 protein levels were analyzed by immunofluores-

cence, Western blot and qRT-PCR in Sf9 cells in which LsTUB was silenced or overexpressed

(Fig 7). Immunofluorescence analyses showed that NS3 co-localized with LsTUB in the Sf9 cell

membrane, and stronger fluorescence signals of NS3 were detected in the cytoplasm of Sf9

cells at 24 h (Fig 7A). However, differential expression of LsTUB did not affect NS3 signal

strength in Sf9 cells (Fig 7A). Western blot analysis showed that the transfection with LsTUB

Fig 5. The effect of LsTUB on the RNA silencing suppressor activity of the RSV NS3 protein. (A) Leaves of wild-

type N. benthamiana plants were co-agroinfiltrated with a GFP-expressing vector, a vector encoding dsGFP, an empty

vector (EV), or a vector encoding P19 (positive control), or NS3, or NS3 mutants (NS3 mut SFL74-76AAA and NS3 mut
IWI80-82AAA). The leaves were photographed at three days post-infection under UV light. (B) Leaves of wild-type N.

benthamiana plants were co-agroinfiltrated with a GFP-expressing vector, a vector encoding dsGFP, and an empty

vector (EV), or a vector encoding P19 or NS3 (with or without a vector encoding LsTUB). (C) The expression of

LsTUB and RSV NS3 in leaves from different treated spots was determined using anti-LsTUB and anti-RSV NS3

antibodies.

https://doi.org/10.1371/journal.ppat.1008710.g005
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resulted in a significant increase of LsTUB mRNA abundance and protein levels, and treat-

ment with dsLsTUB significantly reduced LsTUB expression compared to the controls (Fig

7B, S6 Fig). The RNA copy number equivalents of RSV were obviously 4 to 5-fold higher at 24

h than at 12 h post-RSV infection (Fig 7C). However, when the LsTUB was overexpressed or

knocked down in Sf9 cells, the copy number equivalents of RSV RNA were not significantly

reduced at 1, 6, 12 and 24 h post-infection compared to GFP RNA and dsGFP control treat-

ments (Fig 7C). Taken together, these results suggest that overexpression or suppression of

LsTUB does not significantly affect RSV replication in virus-infected insect cells.

RNAi mediated silencing of LsTUB attenuates viral spread in vivo
After eliminating the above possibilities, we proposed that LsTUB might play a critical role in

the passage of RSV through midgut and salivary glands. We investigated the distribution of

Fig 6. dsTUB-mediated RNAi inhibits RSV loads and reduces NS3 protein levels. Viruliferous SBPH were fed on artificial diets supplemented with dsGFP or dsTUB.

SBPH midgut (A) and salivary glands (B) were analyzed for viral loads by qRT-PCR (red columns indicate dsTUB; blue columns indicate dsGFP). Levels of LsTUB, NS3

and GAPDH were analyzed by immunoblotting, and GAPDH was used as control. Each treatment was replicated three times for qRT-PCR, and values represent

means ± SE, A student’s t-test was used to analyze significance; �� represents P<0.01. Midguts (Fig 5C–5D”’) and salivary glands (Fig 5E–5F”’) of viruliferous SBPH

were immunolabeled with anti-RSV NS3 (Alexa Fluor 488, green) and anti-LsTUB (Alexa Fluor 555, red) and then examined by confocal microscopy. Abbreviations:

mg, midgut; sg, salivary glands; and vm, visceral muscle. Bar = 50 μm.

https://doi.org/10.1371/journal.ppat.1008710.g006
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Fig 7. The effect of LsTUB overexpression and knockdown on RSV accumulation in LsST6 transfected Sf9 cells.

(A) The effect of LsTUB overexpression and LsTUB knockdown on RSV NS3 in LsST6 transfected Sf9 cells at 24 h

after RSV infection. The Sf9 cells were treated with anti-LsTUB antibody labeled with Alexa Fluor 555 (red) and anti-
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LsTUB and RSV NS3 in different organs from 400 dsGFP/dsLsTUB-treated non-infected

SBPHs at 1, 3, 5, and 7 days after acquiring the virus from the infected plants. Once RSV was

ingested by SBPH, the virus established its primary infection in the midgut epithelial cells and

then spread to other insect tissues (Fig 8). At 3 days post-initial access to diseased plants

(padp), viral infection was initially observed in a limited number of midgut epithelial cells in

14–15% of SBPHs treated with dsGFP or dsLsTUB (Table 2, Fig 8C–8C”’ & 8D–8D”’), suggest-

ing that the treatment of dsLsTUB did not affect the early infection of RSV (S7 Fig). At 5 days

padp, RSV spread to the visceral muscle cells surrounding the infected midgut epithelial cells

in 22% of dsGFP-treated SBPHs (Table 2, Fig 8E–8E”’). Meanwhile, in 9% of the dsGFP-

treated SBPHs, RSV NS3 antigen was also detected in the hemocyte cells. However, in 17% of

dsLsTUB-treated insects, viral infection was essentially restricted in infection foci in the mid-

gut with only very few hemocytes showing the presence of NS3 antigen (Table 2, Fig 8F–8F”’).

At 7 days padp, RSV was found to accumulate in the entire alimentary canal in 31% of the

dsGFP-treated SBPHs and spread to the salivary glands in 14% of the dsGFP-treated SBPHs

(Table 2, Fig 8G–8G”’, 8O–8O”’ & 8W–8W”’). By contrast, only 3% of the dsLsTUB-treated

SBPHs had infections in salivary glands (Table 2, Fig 8H–8H”’, 8P–8P”’ & 8X–8X”’). These

results suggest that dsLsTUB treatment significantly attenuates RSV spread from the initial

infection foci in the midgut to salivary glands.

Silencing of LsTUB via RNAi results in decreased RSV transmission

efficiency

The ability of dsLsTUB-treated viruliferous SBPH to transmit RSV was evaluated. Following a

two-day acquisition period on RSV-infected rice plants, each viruliferous SBPH treated with

dsLsTUB or dsGFP was transferred to healthy rice seedlings, allowed to feed for two days, and

then evaluated for virus infection rates by qRT-PCR (Table 3). At 15 days post-infection,

24.1% of rice plants fed on by dsLsTUB-treated SBPH contained RSV, compared to 61.3% of

plants fed on by dsGFP-treated SBPH. The significance of transmission efficiency was evalu-

ated by χ2 analysis, and P-values indicated that the infection rate of dsLsTUB-treated SBPH

was significantly lower than the dsGFP-treated viruliferous SBPH (Table 3).

Furthermore, the effect of dsLsTUB on the transmission efficiency of SBPH acquiring RSV

from parents was evaluated by qRT-PCR. At 15 days post-infection, about 12.0% of rice plants

fed on by dsLsTUB-treated SBPH contained RSV, compared to over 40.0% of plants fed on by

dsGFP-treated or untreated (control) SBPH (Table 3), indicating that RNAi-mediated knock-

down of LsTUB inhibits horizontal transmission of the virus. These results indicate that

LsTUB plays a function in RSV transmission from SBPH to rice plants.

Silencing of LsTUB in viruliferous SBPH has no effect on its feeding

behavior

To investigate whether the decrease in RSV transmission efficiency was caused by RNAi-medi-

ated changes in SBPH feeding behavior, the electrical penetration graph (EPG) technique was

used to monitor SBPH feeding [37]. EPG signals were classified into seven different waveforms

including NP, N1, N2-a, N2-b, N3, N4, and N5, which represent the following phases: non-

RSV NS3 antibody labeled with Alexa Fluor 488 (green) and then examined by confocal microscopy. Bars = 50 μm. (B)

The protein expression level of LsTUB and RSV NS3 were analyzed by immunoblotting. GAPDH was used as control.

(C) RSV copy number equivalents were tested by qRT-PCR in Sf9 cells. Total RNA was extracted from Sf9 cells at 1, 6,

12 and 24 h after adding virus particles to analyze the RSV loads. Values represent means ± SE; significance was

evaluated by t-test analysis.

https://doi.org/10.1371/journal.ppat.1008710.g007
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penetration, penetration, stylet movement with salivary secretion, sustained salivary secretion,

extracellular movement of the stylet around the phloem, phloem feeding, and xylem feeding,

respectively [29]. Representative EPG waveforms were not significantly different between

dsGFP-treated and dsTUB-treated SBPH (Fig 9), indicating that LsTUB knockdown does not

alter the feeding behavior of SBPH. As mentioned above, plants fed on by dsLsTUB-treated

Fig 8. The effect of dsLsTUB on RSV spread in SBPH. Typical patterns of LsTUB and RSV NS3 distribution in

different organs of dsGFP and dsLsTUB-treated SBPHs at 1 (A, B, I, J, Q, R), 3 (C, D, K, L, S, T), 5 (E, F, M, N, U, V),

and 7 days padp (G, H, O, P, W, X). The midgut, hemocytes and salivary glands were labeled with anti-LsTUB

antibody conjugated with Alexa Fluor 555 (red) and anti-RSV NS3 antibody conjugated with Alexa Fluor 488 (green)

and then examined by confocal microscopy. Bars = 50 μm.

https://doi.org/10.1371/journal.ppat.1008710.g008

PLOS PATHOGENS Insect α-tubulin mediates the passage of RSV and enhances horizontal transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008710 August 20, 2020 14 / 26

https://doi.org/10.1371/journal.ppat.1008710.g008
https://doi.org/10.1371/journal.ppat.1008710


viruliferous SBPH showed a lower infection rate (Table 3). Thus, the decrease in RSV trans-

mission efficiency in dsTUB-treated viruliferous SBPH can be attributed to reduced RSV accu-

mulation and transmission in the insect.

Discussion

The intracellular tubulin family is highly-conserved [38] and consists of α, β and γ subfamilies;

the α- and β-tubulin subunits are highly heterogeneous and numerous isotypes exist with dif-

ferent expression patterns [39]. The α- and β-tubulin heterodimers interact laterally and longi-

tudinally to form microtubules in the cytoskeleton [40, 41], and function in intracellular

transport and cell division in eukaryotic organisms [42]. The tubulins and formed microtu-

bules are also utilized by Chikungunya virus and Suid alphaherpesvirus 1 for viral internaliza-

tion [43, 44]; whereas Human immunodeficiency virus-1, dengue 2 virus, Vaccinia virus and

John Cunningham virus use them for trafficking [45, 46, 47, 48]. Furthermore, tubulins and

microtubules are used by Human parainfluenza virus type 3 for viral replication [49], and Jap-

anese encephalitis virus and West Nile virus use them for viral assembly [50, 51]. SBPH was

shown to contain two or more genes encoding both α- and β-tubulin, and additional full-

length sequence of the β-3 tubulin gene has also been identified [52]. However, no prior

reports exist documenting a role for SBPH tubulin in virus transmission. In the present study,

we cloned the gene encoding LsTUB (Fig 1) and showed that it was highly expressed in RSV-

infected salivary glands of SBPH (Fig 2). Subsequent experiments revealed that suppression of

LsTUB expression resulted in attenuated spread of RSV from midgut to salivary gland and

reduced RSV transmission to rice plants (Fig 8, Table 2). These findings document a novel

function for LsTUB in enabling RSV to overcome the midgut and salivary gland barriers of

SBPH, leading to the dissemination of the virus to other organs in the insect vector.

Table 2. Infection of various SBPH tissues with plant-acquired RSV following silencing of LsTUB via dsRNA.

Treatment Time (padp) Number of positive SBPH with NS3 antigens detected by immunofluorescence microscopy at

different days padp (n = 100)

Different tissues Midgut Hemocytes Salivary glands

dsGFP 1 days 0 0 0

3 days 15 0 0

5 days 22 9 0

7 days 31 29 14

dsLsTUB 1 days 0 0 0

3 days 14 0 0

5 days 17 4 0

7 days 29 13 3

https://doi.org/10.1371/journal.ppat.1008710.t002

Table 3. Transmission rates of viruliferous SBPH following LsTUB silencing via dsRNA.

Strains Treatment Virus transmission rates χ2test

Treatments χ2value P value

Viruliferous SBPHs acquiring RSV from infected plant dsGFP 61.3% (19/31) dsTUB vs dsGFP 6.98 0.008

dsTUB 24.1% (7/29)

Viruliferous SBPHs acquiring RSV from parents Control 40.0% (12/30) Control vs dsTUB 4.07 0.044

dsGFP 48.1% (13/27) dsTUB vs dsGFP 6.36 0.012

dsTUB 12.0% (3/25) Control vs dsGFP 0.12 0.725

https://doi.org/10.1371/journal.ppat.1008710.t003
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In insect vectors, the interaction between host tubulin and viral proteins has been associ-

ated with viral transport. Recently, α-tubulin in the leafhopper Nephotettix cincticeps was

shown to interact with nucleorhabdovirus matrix (M) protein from rice yellow stunt virus

(RYSV), which impacted viral transport through neural tissue [53]. Our results showed that

knockdown or overexpression of LsTUB did not alter RSV replication in insect cells (Fig 7).

However, when LsTUB-NS3 binding was disrupted, the spread of RSV from the initially-

infected midgut cells to salivary glands was inhibited (Fig 8). Thus, we suggest that LsTUB-NS3

binding facilitates RSV transport in SBPH cells, which is similar to the interaction of α-tubulin

and the M protein from RYSV [53]. Meanwhile, the distribution analysis revealed the co-local-

ization of LsTUB with NS3 or CP in SBPH cells (Figs 3 & 4). Although there is no direct inter-

action between NS3 and CP, the two proteins aggregated and formed inclusion bodies in Sf9

cells [54]. Thus, we speculate that LsTUB and NS3 associate with CP via an unknown mecha-

nism. Taken together, our results suggest that LsTUB-generated microtubules bind to NS3

and recruit CP to facilitate virion transport through SBPH cells, thereby overcoming organ

barriers; however, the actual mechanism in vivo warrants further exploration.

Fig 9. Electrical penetration graph (EPG) analysis of dsGFP or dsTUB-treated viruliferous L. striatellus. Waveform abbreviations: NP, non-penetration; N1,

penetration; N2, salivation; N3, extracellular movement of stylet near the phloem; N4, sap ingestion in phloem; N5, water ingestion in xylem. Values represent

means ± SE; significance was evaluated by t-test analysis.

https://doi.org/10.1371/journal.ppat.1008710.g009
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RSV requires NS3 silencing suppressor activity to counter host defenses, which facilitates

systemic infection of both rice and SBPH [55, 56]. A recent report demonstrated that RSV NS3

can hijack the 26S proteasome by interacting directly with the SBPH RPN3 protein [55], sug-

gesting. RSV NS3 may have additional functions that have not yet been elucidated. Our obser-

vations using Y2H and GST pull-down assays showed that NS3 interacts with LsTUB, and the

binding site of NS3 to LsTUB was required for NS3 self-interaction and silencing suppressor

activity (Fig 4). Furthermore, our results confirm that, in addition to silencing suppressor

activity, the binding site of NS3 to LsTUB also plays a critical role in RSV transmission (Fig 6).

Thus, RSV NS3 interacts with LsTUB to enhance dissemination of the virus in the insect

vector.

Multiple reports have demonstrated that circulative-propagative viruses establish infections

in insect midgut [32, 57], which is the initial barrier. These viruses then disseminate into other

organs until they reach the final barrier, e.g. the salivary glands [24, 58]. Based on previous

reports, two SBPH components are known to interact with the RSV CP to help the virus over-

come the midgut barrier. One interaction consists of LsST6-CP binding, which mediates viral

entry into midgut epithelial cells [26]. Another is GPS2-CP binding, an interaction that acti-

vates the SBPH JNK (c-Jun N-terminal kinase) signaling pathway in the midgut, which is ben-

eficial to viral replication [32]. With respect to the salivary gland barrier, only CPR1- or

GPS2-CP binding were reported to facilitate viral infection in the salivary glands [31, 32]. The

spread of RSV in SBPH is obviously complex and requires multiple components. In this study,

the interaction between LsTUB and NS3 facilitated RSV infection of midgut and salivary

glands, which results in successful virus transmission to rice plants. Our findings thus comple-

ment and improve overall knowledge of the mechanistic basis of viral transmission in the

SBPH vector; however, whether the LsTUB-NS3 interaction functions differently in the mid-

gut vs. salivary glands requires further study.

Plant virus transmission is closely associated with the feeding behavior of insect vectors;

therefore, monitoring the feeding process of dsRNA-treated SBPH can reveal the impact of

dsRNA on feeding behavior and subsequent transmission to rice plants. EPG recordings have

been used to investigate stylet penetration behavior in hemipteran insects [37, 59]. In the pres-

ent study, the RSV infection rate in dsTUB-treated SBPH was significantly lower than the con-

trol group; however, the feeding behaviors of dsTUB-treated and control SBPH were not

significantly different. Thus, the decrease in RSV transmission rate was not the result of altered

feeding behavior, but was instead attributed to inefficient crossing of midgut and salivary

gland barriers due to dsTUB treatment.

In summary, our results indicate that LsTUB helps RSV overcome the midgut and salivary

gland barriers and enhances horizontal transmission of the virus. This conclusion is supported

by immunofluorescent monitoring of LsTUB and RSV in midgut and salivary glands and by

Y2H and pull-down assays with LsTUB and NS3 in vitro. Silencing of LsTUB expression by

RNAi also reduced NS3 levels and consequently reduced viral dissemination into midgut and

salivary glands, which ultimately reduced re-inoculation into the plant. These insights provide

a better understanding of the interaction between plant viruses and vectors and may ultimately

reveal new avenues for therapeutic intervention.

Materials and methods

Insects

Non-infected (RSV-free) and viruliferous strains of L. striatellus were originally collected from

Jiangsu Province, China, and were maintained in the laboratory for eight years. Both non-

infected and viruliferous SBPHs were reared independently on 2–3 cm seedlings of rice cv.
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Wuyujing 3 in glass beakers containing soil at a depth of 3–5 cm. Plants were maintained in a

growth incubator at 25 ± 1˚C, with 80 ± 5% RH and a 12-h light-dark photoperiod. Under

these environmental conditions, SBPH development took 7 days for the egg stage, 15–18 days

for the nymph stage, and 10–12 days for the adult stage. During the 30–37 day developmental

period, both non-infected and viruliferous strains were transferred to fresh seedlings every 10–

12 days for sufficient nutrition. To ensure that insects were viruliferous, individual female

insects were allowed to feed independently. Parents and resulting offspring were collected in

two-week intervals and analyzed via Dot-ELISA using monoclonal RSV CP-specific antibodies

(anti-CP, 1:500) [60]. Highly viruliferous colonies were retained and used in subsequent

studies.

To obtain viruliferous SBPHs, non-infected second instar nymphs were exposed for two

days to RSV-infected rice plants with visible symptoms. Thereafter, RSV-positive individuals

were identified via Dot-ELISA.

Virus

More than 50 viruliferous SBPHs were placed into a glass beaker containing rice seedlings (2–

3 cm high), and the RSV-infected rice plants were then cultivated until symptoms appeared.

The RSV-infected leaves were collected and stored at −80˚C in the laboratory until RSV

purification.

Cloning of LsTUB
Total RNA was isolated from 15–20 SBPHs using TRIzol reagent according to the manufactur-

er’s protocol (Invitrogen). The quality and concentration of total RNA were determined by

spectrophotometry (NanoDrop, Thermo Scientific). The extracted RNA (500 ng) was subse-

quently used for reverse transcription in a 10 μl reaction with the PrimeScript RT reagent kit

and gDNA Eraser as recommended by the manufacturer (Takara, Dalian, China). Based on

the α-tubulin mRNA sequence downloaded from NCBI (GenBank accession no. AY550922.1),

5’ and 3’ RACE were conducted to obtain the full-length transcript of α-tubulin using 5’- and

3’-RACE kits (Takara). The predicted LsTUB protein sequence was subjected to Blast analysis

using DNAman software (LynnonBiosoft, USA), and domains of the predicted protein were

deduced using SMART (http://smart.embl-heidelberg.de/) [61].

Tissue collection

SBPH adults and nymphs were anesthetized with CO2 for 1–3 min, and then placed into a cul-

ture dish (35 mm diameter). First, forelegs were removed from the coxa-trochanter joint using

forceps (WPI, Sarasota, FL, USA), and hemolymph droplets were collected to avoid contami-

nation by the fat body [62]. The remaining SBPHs were then dissected in prechilled and sterile

PBS buffer (pH 7.4, 10 mM) to obtain midguts and salivary glands. All tissues were washed

three times in sterile PBS buffer to remove other tissues, proteins, and surface contaminants.

Real-time qRT-PCR

To measure LsTUB expression levels and RSV copy number equivalents in SBPH, total RNA

was isolated from 50 whole bodies, 50 midgut or 100 salivary glands of SBPH adults (female /

male ratio = 1:1) using the TRIzol Total RNA Isolation Kit (Takara, Dalian, China). Total

RNA concentrations were quantified, and first-strand cDNA was synthesized as described

above. The primers (S2 Table) used for detecting RSV titers were designed based on RSV CP-

specific nucleotide sequences. Similarly, LsTUB and LsActin (control) primers (S2 Table) were
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designed based on LsTUB and LsActin sequences, respectively. qRT-PCR was conducted using

a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) and SYBR Premix

Ex Taq (Takara, Dalian, China) as follows: denaturation for 3 min at 95˚C, followed by 40

cycles at 95˚C for 10 s, and 60˚C for 30 s. Relative expression levels for triplicate samples were

calculated using the ΔΔCt method, and expression levels of target genes were normalized to

the SBPH Actin gene. Three technical repeats were performed for each of the three biological

replicates.

Antibodies

The mouse polyclonal antibody against the RSV CP peptide was produced by HuaAn Biotech-

nology Co., Ltd (HuaBio, Hangzhou, China). The rabbit anti-RSV NS3 was kindly provided by

Dr. Kun Zhang (Yangzhou University). Due to highly conserved α-2-tubulin, the rabbit

monoclonal anti-α-TUB antibody (EP1332Y, Abcam, UK) was used to detect LsTUB in

SBPHs. The following antibodies were obtained from the sources indicated: goat anti-mouse

IgG HRP conjugate (cat. CW0102S, Cwbiotech, China), goat anti-rabbit IgG HRP conjugate

(cat. CW0103S, Cwbiotech, China), Alexa Fluor 488-labeled goat anti-mouse IgG (cat. 115-

545-003, Jackson ImmunoResearch Laboratories, USA), Alexa Fluor 555-labeled donkey anti-

rabbit IgG (cat. ab150074, Abcam, UK), rabbit polyclonal anti-His tag (cat. 2365, Cell Signaling

Technology, USA), and rabbit polyclonal anti-GAPDH antibody (cat. ab157156, Abcam, UK).

DAPI (4’,6-diamidino-2-phenylindole) was from Sigma (cat. 28718-90-3, Sigma, USA).

Western blotting

Whole body (50), midgut (50) and salivary gland (100) samples of adults (female / male

ratio = 1:1) were collected and lysed with TRIzol reagent (ThermoFisher, USA) or Cell Lysis

reagent (Beyotime, China) for protein extraction according to the manufacturer’s protocols.

After adding 6× SDS loading buffer, 50 μg protein samples were boiled for 10 min. The pro-

teins were separated by 8–12% SDS-PAGE and transferred onto PVDF membranes. Blots

were probed with the following antibodies: anti-LsTUB (1:1000 dilution), anti-RSV CP

(1:1000 dilution), anti-RSV NS3 (1:500 dilution), or anti-GAPDH (1:2000 dilution). Immuno-

reactive bands were detected using a goat anti-rabbit/goat anti-mouse IgG-conjugated HRP

antibody and a goat anti-mouse IgG-conjugated HRP antibody (Proteintech, USA) at a 1:5000

dilution. Western blots were imaged with a Chemiluminescence Detection Kit (Bio-Rad, Her-

cules, CA, USA) and the Molecular Imager ChemiDo XRS System (Bio-Rad). Triplicate sam-

ples were performed for each experiment and the relative intensities of protein expressions

were calculated using Image lab 5.2.1 software (Bio-Rad).

RNA interference (RNAi)

The coding sequences of LsTUB and GFP were cloned into pMD19-T vectors (Takara, Japan).

The primers for dsGFP and dsTUB amplification are listed in S2 Table. Using the cDNA tem-

plates obtained above, dsRNAs were synthesized using the T7 RiboMAX Express RNAi System

kit as recommended by the manufacturer (Promega, USA). A membrane feeding approach

was used to introduce dsRNAs into SBPHs as described previously [57, 63, 64]. Briefly, second

instar nymphs of viruliferous SBPH were maintained on a mixed diet containing 0.5 mg/ml

dsRNAs for four days via membrane feeding and then transferred to healthy rice seedlings. To

investigate the RNAi effect of dsLsTUB on viral spread in SBPH, a microinjection method was

used as previously reported [26, 28]. Third instar non-infected nymphs were microinjected

with 23 nl dsLsTUB (2.5 μg/μl) or dsGFP (2.5 μg/μl) using an UMP3-2 UltraMicroPump

(UMP3) with SYS-Micro4 Controller (WPI, FL, USA), followed by a two-day acquisition
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period on RSV-infected rice plants. All individuals were transferred and maintained on

healthy rice seedlings until evaluation immunofluorescence, qRT-PCR or Western bolt analy-

sis. The effects of dsRNA on LsTUB expression was investigated by qRT-PCR.

Immunofluorescence microscopy

More than 30 SBPH adults were maintained on rice plants for seven days after RNAi treatment

and dissected to obtain midgut and salivary glands. The dissected samples were fixed with 4%

paraformaldehyde for 1 h. Samples were then blocked using 10% fetal bovine serum at ambient

temperature for 2 h. Samples were incubated for 16 h at 4˚C with preimmune serum and anti-

LsTUB or anti-RSV CP antibody at 1:500 dilution before incubation with the following sec-

ondary antibodies: Alexa Fluor 555- or Alexa Fluor 488-labeled secondary goat anti-rabbit

IgG. Samples were then washed three times in PBS, and stained with 100 nM DAPI and

CM-Dil (Sigma-Aldrich, USA) for 2 min at room temperature. Fluorescence was observed

with a Leica TCS SP8 STED confocal microscope (Leica, Germany).

Yeast two-hybrid assay

Yeast two-hybrid assays were conducted using protocols supplied with the Yeastmaker Yeast

Transformation System 2 (Takara-Clontech, USA). Briefly, the cDNA library of RSV was

cloned as prey in plasmid vector pGADT7 using the Easy Clone cDNA library construction kit

(Dualsystems Biotech), and a full-length LsTUB was cloned as bait in pGBKT7. Positive clones

were selected on SD quadruple-dropout (QDO) medium (SD/-Ade/-His/-Leu/-Trp), and

interacting prey constructs were recovered and sequenced. To distinguish positive from false-

positive interactions, we co-transformed empty pGADT7 and pGBKT7 into yeast strain

Y2HGold. ß-galactosidase activity was detected with the HTX Kit (Dualsystems Biotech).

GST pull-down assay

LsTUB cDNA fragments were amplified and cloned into pGEX-3X as glutathione-S-transfer-

ase (GST) translational fusions. Recombinant proteins were produced in Escherichia coli strain

BL21 and purified. For pull-down assays, viruliferous SBPH extract (1 mg), immobilized gluta-

thione-Sepharose beads (200 μl) and GST-LsTUB protein (500 μg) were added to 1 ml of pull-

down buffer (50 mM Tris, 150 mM NaCl, 0.1% Triton X-100, 1 mM PMSF, 1% protease inhib-

itor cocktail [pH 8.0]), and then incubated at 4˚C for 16 h. Similarly, insect extracts were incu-

bated with GST protein as a negative control. Beads were washed four times with pull-down

buffer, and retained proteins were released by adding 2× loading buffer and incubating for 5

min at 95˚C. Proteins were then separated by SDS–PAGE and detected using anti-GST (Cusa-

bio, China) and anti-NS3 antibodies.

RNA silencing suppression activity

LsTUB, RSV NS3 and two mutant forms of NS3 were amplified from pGBKT7-LsTUB,

pGADT7-RSV NS3, pGADT7- RSV NS3 mut SFL74-76AAA and RSV NS3 mut IWI80-82AAA

respectively. The products were inserted into pGEM-T (Promega, USA) and sequenced. Plas-

mids were then digested with BamHI/SalI and inserted into the binary vector pBin438, a plas-

mid expressing 35SGFP35S-GFP [65]. Plasmids expressing the Cymbidium ringspot virus P19

gene (P19), GFP, and an inverted repeated sequence of GFP (dsGFP) were also used in this

experiment. Constructs were individually electroporated into A. tumefaciens C58C1. For co-

inoculation assays, A. tumefaciens strains were grown to OD600 = 0.6–0.8, and one-month-old

N. benthamiana leaves were spot-inoculated with A. tumefaciens harboring LsTUB, GFP,
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dsGFP, NS3 or the NS3 mutants using 1 ml syringes. GFP silencing in leaf tissue was assessed

under UV light at 3–4 days post inoculation, and leaves were photographed with a Nikon digi-

tal camera (model D800).

LsST6-transfected Sf9 cell line

The S. frugiperda Sf9 insect cell line was provided by Prof. Fei Ma (Nanjing Normal Univer-

sity) and incubated at 27˚C in Sf-900 III SFM medium (Gibco, USA) containing 5% newborn

calf serum. LsST6 was amplified based on the SBPH sequence deposited in NCBI (GenBank

accession no. MG589412). The PCR product containing LsSt6 was cloned as a BamHI/XbaI

fragment in pFastBacHTB (Invitrogen, USA) and introduced into Sf9 cells to generate the

LsST6-Sf9 cell line as described previously [26].

Transfection and RSV infection of Sf9 cells expressing LsST6
A baculovirus expression system (Bac-to-Bac, Invitrogen, USA) was used to overexpress GFP
and LsTUB in LsST6-Sf9 cells. The LsST6-Sf9 cells were transfected with 0.5 mg/ml dsGFP or

dsLsTUB and Cellfectin II reagent (Invitrogen, USA) for 24 h as described previously [26]. At

48 h post-transfection, RSV particles (1.5 μg/μl) were added to the Sf9 cells as described [26],

and RSV-infected Sf9 cells were collected at 1, 6, 12 and 24 h post-infection and washed five

times in double-distilled water. The Sf9 cell lines were fixed and prepared for confocal micros-

copy. Total RNA was also extracted from these cells using TRIzol Total RNA Isolation Kit

(Takara, Dalian, China) for qRT-PCR, and total protein was extracted for Western blot analy-

sis. Each well of the plate was considered to be a single replicate, and each treatment contained

three replicates.

RSV acquired from infected plants spread in SBPHs

The SBPHs can acquire and transmit RSV at almost all stages of development [15]. The latent

period of RSV in SBPHs ranges from 3 to 10 days [26, 66]. No significant sexual dimorphism

in regard to virus acquisition efficiency was observed. However, in general, females were more

efficient vectors than males in terms of RSV transmission [15, 67]. More than 400 3rd instar

nymphs of SBPH were microinjected with dsGFP or dsLsTUB, followed by a two-day acquisi-

tion period on RSV-infected rice as described above. At 1, 3, 5, and 7 day post-initial access to

diseased plants (padp), 100 SBPHs were collected and dissected to obtain midguts, hemocytes,

and salivary glands for RSV detection using RSV NS3 antibody and the number of infected

organs was recorded.

Electrical penetration graph (EPG) recording and data analysis

More than 50 nymphs from RSV-infected SBPH strains were reared for seven days on artificial

liquid diets [68] supplemented with one of the following: dsGFP, dsLsTUB, or no dsRNA

(control). After a 30-min starvation, the mesonotum of L. striatellus was affixed with a gold

wire (20 μm diameter, 2–3 cm long) using a soluble conductive adhesive. Each L. striatellus
individual was then connected to an eight-channel EPG recorder (Model: CR-8 DC-EPG I).

Nymphs were placed on the culms of rice seedlings (three-leaf stage) in Ferrari insect cages;

activity was recorded for 8 h in a greenhouse maintained at 25–26˚C, with 60±5% RH.

Nymphs were removed at the end of the 8 h period and analyzed for RSV by Dot-ELISA. If an

insect tested virus-free, the data were considered invalid. Each treatment contained 20–30 rep-

licates, and all recorded signals were analyzed.
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RSV transmission efficiency

The transmission efficiency of SBPH acquiring RSV from infected plants. More than

100 SBPH individuals acquired RSV from infected plants were microinjected with dsGFP or

dsLsTUB as described above. SBPH individuals were kept independently on non-infected rice

seedlings for 2 days. Each individual was then removed and analyzed by dot-ELISA to confirm

viral infection. Non-infected (non-viruliferous) individuals and corresponding seedlings were

eliminated from the experiment. The remaining rice seedlings colonized by RSV-viruliferous

insects (25–30 plants/treatment) were incubated another 10–15 days. RSV infection of rice

seedlings was confirmed by qRT-PCR using RSV CP primers (S2 Table).

The transmission efficiency of SBPH acquiring RSV from parents. Following the EPG

analysis above, rice seedlings fed on by RSV-infected SBPH were also incubated an additional

10–15 days to ensure virus propagation. RSV infection of rice seedlings used in EPG analysis

was determined by qRT-PCR as described above.

Evaluation of RSV transmission rates. The number of infected rice seedlings was

recorded and calculated to determine transmission rates; rice seedlings colonized by dsGFP-

treated or untreated SBPH were considered controls. Each seedling was considered to be one

replicate, and each treatment had 25–30 replicates. Transmission rates were calculated as fol-

lows: transmission rate (%) = (number of infected seedlings/total number of seedlings) × 100.

A χ2 test was performed with SPSS statistical software [69] to detect differences between

treatments.

Supporting information

S1 Fig. Western blot analysis of LsTUB and RSV NS3 protein in non-infected and virulifer-

ous SBPH.

(TIF)

S2 Fig. Yeast cotransformants were incubated on DDO (SD/–Leu/–Trp) and QDO (SD/–

Ade/–His/–Leu/–Trp plus X-α-Gal) at 28˚C for 4 days.

(TIF)

S3 Fig. The interaction between LsTUB and other viral proteins detected by yeast two-

hybrid assay.

(TIF)

S4 Fig. Relative levels of LsTUB mRNA after RNAi-mediated knockdown. LsTUB expres-

sion in untreated, and dsGFP- or dsTUB-treated SBPH. LsTUB expression was evaluated by

qRT-PCR and normalized relative to GAPDH transcript levels. Values represent means ± SE.

Significance was evaluated by t-test analysis, and ��� is significant at P<0.001. Treatments

were replicated three times.

(TIF)

S5 Fig. Relative intensity of LsTUB and RSV NS3 protein levels in dsTUB-treated midgut

and salivary glands. Significance was evaluated by t-test analysis: �, significant at P<0.05; ��,

significant at P<0.01; and ���, significant at P<0.001. Treatments were replicated three times.

(TIF)

S6 Fig. The mRNA expression levels of LsTUB and LsST6 in LsST6-tranfected Sf9 cells

containing dsLsTUB or LsTUB. (A) The mRNA levels of LsTUB (B) and LsST6 in dsLsTUB-

treated and LsTUB-overexpressing Sf9 cells.

(TIF)
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S7 Fig. qRT-PCR analysis of RSV loads in midguts from dsGFP- or dsTUB-treated SBPH

at 3 days padp.

(TIF)

S1 Table. Percentage of RSV infected tissues of SBPH as revealed by immunofluorescence

microscopy (only typical, representative images were taken into consideration).

(DOCX)

S2 Table. Primers used in this study.

(DOCX)
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