
The Journal of Engineering

Jiangsu Annual Conference on Automation (JACA 2019)

Classification of rice planthoppers based on
shape descriptors

eISSN 2051-3305
Received on 9th September 2019
Accepted on 30th September 2019
E-First on 25th November 2019
doi: 10.1049/joe.2019.1085
www.ietdl.org

Saihua Zhu1, Junyuan Zhang1, Xiangze Lin1 , Deying Liu1

1College of Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
 E-mail: xzlin@njau.edu.cn

Abstract: Here, classification of rice planthopper (RPH) based on shape descriptors was addressed to solve the low semantics
problem of shape features in traditional RPH (mainly including the whiteback planthopper (Sogatella furcifera (Horváth)), the
brown planthopper (Nilaparvata lugens (Stål)), and the small brown planthopper (Laodelphax striatellus (Fallén))) image
classification research. Images of RPH were obtained from rice field by an automatic insect image acquisition device made by
ourselves and insect images were divided into single images based on OTSU threshold segmentation algorithm. In terms of the
images of RPH after segmentation, Fourier descriptors and Hu moments, which are from two aspects of contour curve and
shape area, were extracted to describe shape features of RPH. Then, random forest (RF), an ensemble learning algorithm, was
used as the classifier to distinguish RPH efficiently. The optimal number of trees and prediction variables of RF are chosen to be
150 and 4, respectively, by minimising the out-of-bag error. Experimental results show that classification accuracy of RPH based
on shape descriptors reaches up to 93.93%. Therefore, it has been verified that the classification with the method presented
here is accurate and semantic.

1 Introduction
Rice is one of the most important food sources of more than one-
third of the world's population [1], and China is the largest rice-
producing country in the world [2], where rice plays a leading role
in agricultural production and food security. However, rice will be
damaged by pests during various growth periods, which will bring
serious negative impacts on the stable and high yield of rice [3].
Rice planthopper (RPH), mainly including the whiteback
planthopper (WP) (Sogatella furcifera (Horváth)), the brown
planthopper (Nilaparvata lugens (Stål)), and the small brown
planthopper (Laodelphax striatellus (Fallén)), a migratory pest, is
one of the main pests that affects rice growth. Then, a total of four
to five million tons of rice grain are damaged by RPHs each year
[4, 5]. Hence, it is essential to obtain pest population density of
RPH in real time and develop relevant countermeasures in
advance, which can keep the stable and high yield of rice.
Currently, pest forecast of RPH still depends on manual counting,
which will result in the inability to analyse data in time and prevent
RPH effectively [6].

Hence, in order to realise the automation of the pest forecast of
RPH, RPH image classification has become a hot research issue in
recent years [7]. There exist numerous image recognition methods
in RPH classification, such as [8–11]. [8] established the fisher
discriminant function, which was used for the identification of
RPH, based on the 2D spectrum data; In [9], rectangle regions of
interest (ROIs) were gotten in HSV space and colour analysis was
conducted, which showed that the results were useful to reduce
executing time and loading and obtain image of RPHs. In [10],
Fourier descriptors and Euclidean distance were applied to
recognise RPH, and the average recognition rate is 92.15%; [11]
proposed an automatic recognition method based on convolutional
neural network. However, there are some disadvantages in the
above RPH classification researches: after the morphological
filtering operation of ‘corrosion and expansion’, the contours of
RPH images will produce larger deformations, which will lead to
lose its basic semantic information. Hence, to solve those
problems, in this paper, the complete shape contour with Fourier
descriptors and the complete shape region with Hu moments are
combined to represent the shape descriptor, and WP images are
distinguished from other insect images by the shape descriptors,
which have a high classification accuracy. What is more, the

method presented in this paper can also be applied to recognise
other RPH and other insect images.

The rest of the paper is organised as follows. RPH image
acquisition and image preprocessing are given in Section 2. In
Section 3, shape feature extraction of RPH is introduced.
Experimental results are demonstrated and discussed in Section 4.
Concluding remarks and future research are given in the last
section.

2 Image acquisition and preprocessing of RPH
The outbreak period of RPH is from July to September each year in
Jiangsu Province, East China. Therefore, in order to obtain enough
test samples, we acquired the insect images in the rice fields from
two areas in three times. One is Jiangpu Experimental Farm of
Nanjing Agricultural University in Nanjing Pukou District
(N32°01′ E118°37′) from August to October in 2015 and from June
to October in 2016; the other is Baima National Agricultural
Science and Technology Park in Nanjing Lishui District (N31°37′
E119°10′) from August to September in 2017. According to the
characteristics of the phototaxis of RPH, the automatic insect
image acquisition device, which is developed by our group ([12]),
is used to obtain high-resolution images in sunny days with
temperatures between 20 and 30 degrees Celsius and humidity
between 6 and 8%, and Fig. 1 shows the RPH image acquisition
device. In addition, the sampling time was from 18:00 to 20:00
every night. These captured pest images are 782*576 pixels and
saved as JPEG format. WP images and other non-RPH images are
classified in this paper, which is as an example to explain the
effectiveness and accuracy of the method presented in this paper.
Certainly, this method can also be applied to classify the three
types of RPH images and the other non-RPH images. For the sake
of convenience, RPH refers to WP in the following sections. Image
acquisition at experiment site and the original pest image are
shown in Fig. 2. 

After getting the original pest image, these pictures must be
preprocessed at first. In order to facilitate shape features extraction,
image segmentation and contour coordinate extraction are
implemented in next subsections.
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2.1 Image segmentation

In this section, original images in Fig. 2b, including 700 RPH
images and 700 non-RPH images, are segmented into single insect
images. It is well known that the OTSU threshold segmentation
[13] is simple in computation and is not affected by image
brightness and contrast. Hence, it is suitable for our experimental
environment and can meet our needs. The image processed by
OTSU threshold segmentation is shown in Fig. 3. After image
segmentation, the original images are divided into single pest
images, including 700 RPH images labelled as Class 1 and 700
non-RPH images (including leaf beetle (Chrysomelidae), rove
beetle (Oxytelus batiuculus), leafhopper (Cicadellidae), lygaeid
bug (Lygaeidae), ant (Pheidole megacephala (Fabricius) etc.)
labelled as Class 0. All single pest images are 300*300 pixels and
saved as JPEG format. Fig. 4 shows some single pest images after
segmentation, and RPH (A) and RPH (B) are WPs; non-RPH (A) is
leaf beetle and non-RPH (B) is rove beetle. 

2.2 Contour coordinates extraction

In this subsection, contour coordinates of insects are extracted and
then the dimension of these insect contour coordinate dataset is
reduced.

For the 1400 single pest images after the above-mentioned
segmentation, contour coordinates are extracted one by one. The
process of contour coordinates extraction is as follows 

(i) Convert the single pest images to binary images and assume that
the first point in the upper left corner of the image is the coordinate

origin (0, 0). Check all image pixels and mark those points, where
the left and right values are not equal, as the contour points [14]
and let the points with a value equal to 1 be the contour
coordinates. Thus, the contour coordinate dataset is
{Fn = (xi, yi), i = 0, 1, 2, …, N − 1}.
(ii) Select a coordinate as the starting point of the contour curve
randomly, denoted by (x0, y0), then delete this coordinate from the
contour coordinate dataset. Let the upper left coordinate
(x0 − 1, y0 − 1) of the starting point be denoted as 0, and the other
adjacent coordinates of the starting point are also coded by using a
numbering scheme, as in Fig. 5. Then, check the contour
coordinate dataset in the order of 0 to 7 and set the coordinate,
which first appears in the above order, as the next contour
coordinate (x1, y1). In addition, delete this coordinate from
coordinate dataset.
(iii) Let the coordinate (x1, y1) be a new starting point and repeat
Step 2 until all coordinates are sequentially connected [15].

According to the above method, contours of the pests in Fig. 3 are
shown in Fig. 6. 

The comparison between the contours extracted by the method
in [12] (denoted as Contour (I)) and the contours extracted by the
method proposed in this paper (denoted as Contour (II)) are shown
in Fig. 7. From comparison results, it is not difficult to see that the
contours of the pests extracted by the method presented in this
paper have more details, more semantics and can express more
shape information than that in [12].

For the coordinate dataset is very huge, it will spend lots of time
extracting the shape features. In order to increase the efficiency of
computation, dimension of the coordinate dataset should be
reduced [16]. Under the premise of maintaining the intact shape,
we only take one-third of the original coordinate dataset for
subsequent operations. Then, the specific steps are shown in
Procedure 1 (see Fig. 8). 

Contours of the pests after the dimensionality reduction
algorithm and the original contours are shown in Fig. 9. From
Fig. 9, it can be seen that, compared with the original contour, the
shape of the contour is almost invariable after the dimensionality
reduction, and only the inessential details are ignored.

Fig. 1  Structure of the image acquisition device: (1) X-direction
adjustment device; (2) Z-direction adjustment device; (3) camera; (4)
screen; (5) Y-direction adjustment device; (6) base

 

Fig. 2  RPH image acquisition
(a) Image acquisition at experiment site, (b) Original pest image

 

Fig. 3  Original image processed by OTSU threshold segmentation
 

Fig. 4  Different pest images after segmentation
 

Fig. 5  Order of inspection
 

Fig. 6  Contours of different pests
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3 Shape feature extraction of RPH
In order to describe the shape features of RPH better, the shape
features from two aspects, contour curve and shape region, are
extracted.

3.1 Fourier descriptor

Fourier descriptors [17, 18] are obtained by applying the discrete
Fourier transform over a shape signature and are contour-based
shape descriptors. In this paper, Fourier descriptor is used to depict
contour curve features of insects.

According to [10], first 15 coefficients of discrete Fourier
transform are chosen as Fourier descriptors. To perform a discrete
Fourier transform operation on the dataset, the first 15 coefficients
are obtained and the normalisation Fourier descriptors are denoted
as {FD(1), FD(2), …, FD(13)}. The normalised Fourier descriptors
extracted from the contour curve obtained by the method in this
paper (denoted as Method I) and the method in [12] (denoted as
Method II) are shown in Table 1. 

From Table 1, in the case of Method I, it is not difficult to see
that the Fourier descriptors of RPH (RPH (A) and RPH (B)) have
little difference, while different categories of pests have greatly
different Fourier descriptors, for example FD1, FD2 of RPH (A) are
similar to RPH (B)'s; FD1, FD2 of RPH are quite different from
non-RPH's. Therefore, RPH and non-RPH can be well
distinguished by Method I proposed in this paper. However, by
virtue of the Method II, the Fourier descriptors of RPH (A) and
RPH (B) are dissimilar and confused with non-RPH, for example
FD1, FD2 of RPH (A) are similar to non-RPH (A) and non-RPH
(B)'s, which easily lead to misclassification. Hence, for the
efficient classification of RPH and non-RPH, Method I is better
than Method II, and based on these Fourier descriptors extracted

from complete shape of RPH which is used in this paper, namely
Method I, RPH and non-RPH can be effectively classified.

3.2 Hu moment

Hu moments [19, 20] are region-based shape descriptors and
invariant to translation, scale change, mirroring, and rotation,
which can describe the shape information effectively. In this
subsection, Hu moment is utilised to represent shape region
features of insects [21].

According to [18], Hu moments extracted from the shape region
obtained by the method in this paper (denoted as Method I) and the
method in [12] (denoted as Method II) are shown in Table 2. 

From Table 2, under the condition of Method I, it can be seen
that Hu moments of RPH, see RPH (A) and RPH (B), are similar,
including the same symbol and the same order of magnitude. In
addition, Hu moments of different categories of pests have a great
difference, so RPH and non-RPH can be well distinguished by Hu
moment in Method I. When Method II is applied, the differences
between Hu moments of RPH (A) and RPH (B) are very large, so
Hu moment in Method II cannot be used as effective classification
feature. Compared with Method II, Method I has obvious
advantages in RPH image classification. Thus, Hu moments
extracted from complete shape of RPH, that is Method I, can be
used as shape descriptors and RPH and non-RPH can be well
classified.

4 Random forest classification
Random forest (RF) is one of the ensemble learning algorithms,
which are more accurate and robust to noise than single classifiers
[22, 23]. What is more, RF runs on large dataset and can estimate
missing data and maintains accuracy when a large proportion of the
data are missing, efficiently. Thus, taking its ability to process data
and robustness into consideration, RF is applied to classify the
RPH and non-RPH images.

4.1 Selection of classifier optimal parameters

Compared with classification trees, RF needs to consider the
number of trees (k) except the number of prediction variables (N,
the sum of number of Fourier descriptor and number of Hu
moment, i.e. N = 13 + 7 = 20 in this paper), so the complexity of
this classification is O(k(Nnlog n)), where n is the amount of the
dataset [24]. According to [25, 26], the number of trees is generally
100 for most classification problems, and for a given dataset has
fixed number of feature N, the number of prediction variables can
be taken as log2

N, N, and N. In this paper, N is equal to 20 and
log2

N  =  N  = 4. When deciding the number of trees, although
larger values of k resulted in more stable classifications and
variable importance measures, the calculation cost must also be
considered. Therefore, in order to improve the operating efficiency
of the classifier while obtaining the best classification effect, out-
of-bag (OOB, the samples which are not present in the calibration
subset are included as part of another subset) error is used to find

Fig. 7  Contour extraction of different insects
(a) RPH and its contour image, (b) Non-RPH and its contour image

 

Fig. 8  Procedure 1 – dimensionality reduction algorithm
 

Fig. 9  Results of contour dimensionality reduction
(a) The original RPH contours, (b) The RPH contours after the dimensionality
reduction
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the optimal number of trees [27]. Fig. 10 shows the OOB error
depending on the number of trees where the number of prediction
variables is chosen as 4 or 20 according to [25, 26]. 

From Fig. 10, it can be seen when the number of trees gradually
increases from 0, the OOB error decreases rapidly. Then when the
number of trees exceeds 60, the OOB error is lower than 4.3%,
which means that RF can be effectively classify RPH under the
condition that the prediction variables is 4 or 20. When the number
of trees and prediction variables are 150 and 4, respectively, the
OOB error has a minimum value of 3.1%. Meanwhile, the OOB
error converges 3.4% regardless of the value of the feature number
and the addition of more trees neither increases nor decreases the
OOB error. Thus, in order to gain the optimal classification
accuracy and the best operation efficiency, the number of trees and
prediction variables are chosen as 150 and 4, respectively.

4.2 Experimental results

In this RF classification experiment, the experimental samples
consist of 700 RPH images and 700 non-RPH images, a total of
1400 pieces. The 1400 images are randomly divided into five
copies and each copy has 280 images, which facilitate cross-
validation. The feature parameters consist of 13 normalised Fourier
descriptors and 7 Hu moments (20 in total), i.e.
{FD(1), FD(2), …, FD(13), ϕ1, ϕ2, …ϕ7}. The optimal parameters of
RF for this paper are first verified. When the number of trees are
100 [25, 26] and 150 (according to the optimal method in this
paper) and the number of prediction variables are 4 and 20,
respectively, the performance of RF are shown in Table 3. 

From Table 3, it is shown that the optimal numbers of trees and
prediction variables are 150 and 4, and the accuracy and the F1
score are 93.93% and 0.94, which are the best among these
accuracy and F1 score. In addition, when the number of trees is
taken as 150, the model evaluation indexes all beyond 90% and are
significantly better than those whose number of trees is 100, which
proves that larger values of tree number resulted in more stable
classifications. In general, the F1 score are all above 0.8, reflecting
the strong stability and robustness of this classifier. Therefore, RF
can be used to recognise RPH images efficiently.

Then, the method proposed in this paper and the method
proposed in [12] are tested, respectively, when the number of trees
and prediction variables are 150 and 4, respectively, in RF. The
comparison results are shown in Table 4. 

The test results shown in Table 4 demonstrate that, on the one
hand, the accuracy, precision and recall of the method proposed in
this paper are all over 90%, which are fully superior to the method

Table 1 Normalised Fourier descriptors for different pests
Fourier descriptors RPH (A) RPH (B) Non-RPH (A) Non-RPH (B)

Method I Method II Method I Method II Method I Method II Method I Method II
FD(1) 0.562 9.421 0.588 2.318 2.821 10.88 0.064 9.344
FD(2) 0.350 1.047 0.475 0.693 2.439 1.194 0.048 0.248
FD(3) 0.696 0.272 0.325 0.128 1.578 0.553 0.274 0.763
FD(4) 0.631 0.537 0.487 0.210 2.014 0.448 0.214 0.391
FD(5) 0.184 0.877 0.202 0.207 1.041 0.376 0.423 0.211
FD(6) 0.301 0.139 0.232 0.170 0.881 0.124 0.109 0.322
FD(7) 0.074 0.410 0.026 0.193 0.648 0.954 0.070 0.068
FD(8) 0.069 0.643 0.117 0.155 0.571 1.342 0.165 0.106
FD(9) 0.172 0.246 0.038 0.017 0.516 0.926 0.113 0.148
FD(10) 0.026 0.297 0.027 0.027 0.324 0.473 0.051 0.285
FD(11) 0.012 0.295 0.027 0.102 0.215 0.275 0.037 0.055
FD(12) 0.038 0.420 0.032 0.072 0.430 0.125 0.076 0.235
FD(13) 0.052 0.223 0.061 0.053 0.130 0.102 0.010 0.034

 

Table 2 Hu moment for different pests
Hu moment RPH (A) RPH (B) Non-RPH (A) Non-RPH (B)
ϕ1 Method I 2.525 × 10−01 2.626 × 10−01 2.411 × 10−01 3.677 × 10−01

Method II 1.970 × 10−01 2.028 × 10−01 1.760 × 10−01 1.927 × 10−01

ϕ2 Method I 2.806 × 10−03 3.162 × 10−02 6.125 × 10−03 8.999 × 10−02

Method II 7.105 × 10−06 1.072 × 10−05 3.118 × 10−08 2.373 × 10−05

ϕ3 Method I 1.964 × 10−03 3.213 × 10−03 3.561 × 10−04 2.266 × 10−04

Method II 4.805 × 10−07 3.047 × 10−07 1.637 × 10−10 9.297 × 10−07

ϕ4 Method I 2.390 × 10−04 5.027 × 10−04 4.276 × 10−05 5.694 × 10−04

Method II 3.660 × 10−06 5.351 × 10−07 4.417 × 10−08 3.580 × 10−06

ϕ5 Method I 1.431 × 10−07 6.322 × 10−07 −1.774 × 10−09 1.005 × 10−07

Method II −4.071 × 10−12 −9.285 × 10−14 −4.033 × 10−17 −6.434 × 10−12

ϕ6 Method I 3.305 × 10−05 8.859 × 10−05 −3.332 × 10−06 1.600 × 10−04

Method II −8.743 × 10−09 −1.018 × 10−09 −3.715 × 10−12 −1.733 × 10−08

ϕ7 Method I −7.963 × 10−08 −9.317 × 10−08 4.961 × 10−09 1.781 × 10−07

Method II 2.656 × 10−12 1.954 × 10−13 −1.112 × 10−16 1.100 × 10−12

 

Fig. 10  Effect of number of trees and prediction variables on OOB error
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proposed in [12]. On the other hand, the model evaluation indexes
in [12] are just between 60 and 70%, which means that corroded
shapes are not able to be used as valid feature of RPH
classification. The accuracy in this paper is 93.93%, while the
accuracy in [12] is only 90.91%, so the method proposed in this
paper meets the actual requirement when the RPH images are
classified by the method based on shape descriptors.

5 Conclusion
In this study, a RPH recognition method based on shape descriptors
has been developed. Fourier descriptor and Hu moment have been
used to represent the complete shape information of RPH, which
are from two aspects of the contour curve and the shape region.
Moreover, RF has been applied to recognise RPH images and the
accuracy of classification reaches up to 93.93%, which means that
the RPH image classification method presented in this paper can be
applied to the automatic measurement of rice pests and diseases
and reduce labour intensity of pest forecast. In a future study,
colour, texture, and other features, combined with shape features,
will be utilised as feature parameters to improve the classification
accuracy.
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