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Histone acetylation is a specific type of chromatin modification that serves as

a key regulatory mechanism for many cellular processes in mammals. How-

ever, little is known about its biological function in invertebrates. Here, we

identified 12 members of histone deacetylases (NlHDACs) in the brown

planthopper (BPH), Nilaparvata lugens. RNAi-mediated silencing assay

showed that NlHdac1, NlHdac3 and NlHdac4 played critical roles in female

fertility via regulating ovary maturation or ovipositor development. Silen-

cing of NlHdac1 substantially increased acetylation level of histones H3

and H4 in ovaries, indicating NlHDAC1 is the main histone deacetylase in

ovaries of BPH. RNA sequencing (RNA-seq) analysis showed that knock-

down of NlHdac1 impaired ovary development via multiple signalling

pathways including the TOR pathway. Acoustic recording showed that

males with NlHdac1 knockdown failed to make courtship songs, and thus

were unacceptable to wild-type females, resulting in unfertilized eggs. Com-

petition mating assay showed that wild-type females overwhelmingly

preferred to mate with control males over NlHdac1-knockdown males.

These findings improve our understanding of reproductive strategies con-

trolled by HDACs in insects and provide a potential target for pest control.
1. Introduction
Histone acetylation is a specific type of chromatin modification that serves as a

key regulatory mechanism for many cellular processes including DNA replica-

tion and regulation of gene expression [1–6]. The steady state of histone

acetylation is determined by the antagonistic activities of histone acetyltrans-

ferases (HATs) and histone deacetylases (HDACs) [7]. The HATs acetylate the

lysine residues on N-terminal tails of core histones, a process that generally cor-

relates with gene activity [5]. Conversely, HDACs catalyse the removal of acetyl

groups from lysine side chains on core histones and a range of other proteins

[8], which is frequently associated with transcriptional repression. Since the dis-

covery of the first Hdac [9], 18 mammalian genes encoding deacetylase activity

have been identified [10]. Based on sequence similarity, these deacetylases are

divided into two families, the classical HDAC family (zinc-dependent

HDACs) and the sirtuin (sir2-like protein) family of NADþ-dependent deacety-

lases [11–15]. The classical HDAC family includes class I (HDACs 1, 2, 3 and 8),

class II (HDACs 4, 5, 6, 7, 9 and 10) and class IV (HDAC11). Class III is rep-

resented by the sirtuin family which contains seven members (SIRTs 1–7),

homologous to the yeast Saccharomyces cerevisiae Sir2 protein [16,17].

Of the 18 HDACs identified in mammals, HDAC1 is one of the most

thoroughly studied at the biochemical and functional levels [18]. An early
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study revealed that germline deletion of Hdac1 in mouse

resulted in embryonic lethality due to severe proliferation

defects and retardation in development [19]. Also, hundreds

of studies on the growth-promoting activity of HDAC1 in

human cancer were reported [20]. Notably, HDAC2 shares

high amino acid sequence identity with HDAC1, and they

have partially overlapping, but distinct roles in diverse bio-

logical processes [21]. For example, deleting of Hdac2 only

in oocytes led to subfertile mice whereas Hdac1 and Hdac2
double-mutant mice were infertile due to failure of DNA

replication following fertilization [22,23]. Despite growing

knowledge on the molecular mechanism of HDAC1 in mam-

mals, little is known about its biological function in

invertebrates. In the fruit fly Drosophila melanogaster, loss of

Rpd3, the only Hdac1 and Hdac2 orthologue, led to a strong

defect in embryo segmentation [24]. Additional studies

suggested that Rpd3 was essential for cell survival, similar

to the roles of HDAC1 and HDAC2 in mammalian cells

[18,25–27]. Interestingly, a new biological function was

assigned to Rpd3, which showed that wild-type flies sub-

jected to a 7 h training session formed a robust long-term

courtship memory, but this phenotype was completely

abolished in the Rpd3 mutant [28].

The migratory brown planthopper (BPH), Nilaparvata
lugens (Hemiptera: Delphacidae), is a destructive pest of

rice in most of Asia [29]. The BPH feeds exclusively on the

phloem sap of the rice plant and can cause complete wilting

and drying of plants, referred to as hopperburn [30,31]. In

addition to direct feeding, BPH also transmits plant viruses

such as rice ragged stunt virus and rice grassy stunt virus

[32]. In past decades, this pest caused irregular but severe

infestation throughout Asia, e.g. affecting an average

annual area in 2005–2007 of about 26.7 million ha in China

[33,34], thus leading to huge losses of rice yields. The BPH

is characterized by r-strategy reproduction life history; there-

fore high fecundity is one of the most important biological

features contributing to its ecological success [35]. In contrast

to extensive studies of the effect of ecological factors on BPH

fertility, the regulatory molecular mechanism has been little

investigated. Recently, we sequenced and assembled the

BPH genome [29], providing an avenue for better under-

standing of the molecular bases of BPH reproduction.

Facilitated by a robust RNAi response [36,37], accumulated

studies indicated that BPH fertility could be regulated

epigenetically such as by DNA methylation [38], or at the

transcriptional level [39–42]. This offers a potential strategy

for developing RNAi-based pest control.

The aim of this study is to thoroughly investigate the

biological functions of histone acetylation on BPH fertility

by RNAi-mediated knockdown of the NlHdac family. First,

we identified and characterized 12 NlHdac genes in BPH.

Second, RNAi silencing assay showed that NlHdac1,

NlHdac3 and NlHdac4 played pivotal roles in female ferti-

lity, and NlHDAC1 was the main HDAC in BPH ovary.

Third, RNA-seq assay showed that NlHDAC1 regulated

ovary development and oogenesis via multiple signalling

pathways. Last, we showed that males with NlHdac1
knockdown failed to make courtship songs and accom-

plish copulation, suggesting that NlHdac1 plays an

essential role in courtship and mating success of BPH

males. Our results provide new insights into the role of

HDACs in insects and offer a potential to develop

NlHDAC1 inhibitors for BPH control.
2. Material and methods
2.1. Insects
The BPH was originally collected from a rice field in Hang-

zhou, China. Insects were maintained in a walk-in chamber

at 26+0.58C with a relative humidity of 50+5% under a

photoperiod of 16 L : 8 D. Insects were fed with rice seedlings

(rice variety: Xiushui 134).

2.2. Identification and characterization of NlHdac genes
in BPH

2.2.1. Gene identification and sequence analysis

The amino acid sequences of D. melanogaster HDACs were

used to screen against N. lugens genomic and transcriptomic

databases for identification of its homologues in BPH. Sev-

enty HDAC sequences from 19 species including Anopheles
gambiae, Apis mellifera, Acyrthosiphon pisum, Bombyx mori,
Bemisia tabaci, Cryptotermes secundus, Cyprinodon variegatus,

D. melanogaster, Daphnia pulex, Eurytemora affinis, Gnatocerus
cornutus, Halyomorpha halys, Neolamprologus brichardi, Notothe-
nia coriiceps, Nasonia vitripennis, N. lugens, Stegastes partitus,

Tribolium castaneum and Zootermopsis nevadensis were

included in the phylogenetic analysis. Conserved domains

were predicted by SMART (http://smart.embl-heidelberg.

de/). A phylogenetic tree was constructed using the MEGA5

program [43] with the method of maximum-likelihood and

the bootstraps were set with 1000 replications.

2.2.2. Developmental profile and tissue distribution of HDACs

We used quantitative real-time PCR (qRT-PCR) to determine

NlHdac and NlSirt transcripts in different developmental

stages and tissues. For developmental profile examination,

total RNAs were isolated from eggs (n ¼ 100), first-instar

(n ¼ 100), second-instar (n ¼ 50), third-instar (n ¼ 50), fourth-

instar (n ¼ 30), fifth-instar nymphs (n ¼ 15) and adult females

(n ¼ 15), which were laid or ecdysed within 24 h, using

RNAiso Plus (Takara). For tissue distribution examination,

we dissected head, gut, fat body, leg, cuticle and ovary from

adult females (n ¼ 50, 24 h after eclosion) for RNA extraction.

Three independent biological replicates were set for RNA iso-

lation. First-strand cDNA was synthesized using the

PrimeScript 1st strand cDNA synthesis kit (Takara). The

qRT-PCR was conducted on a CFX96TM real-time PCR detec-

tion system (Bio-Rad) with SYBR Supermix under the

following conditions: denaturation for 3 min at 958C, followed

by 40 cycles at 958C for 10 s and 608C for 30 s. The specific pri-

mers corresponding to each NlHdac or NlSirt gene are listed in

the electronic supplementary material, table S1. The relative

expression levels of target genes were normalized by the 18S
rRNA gene using the 2244Ct method (Ct represents the

cycle threshold) [44]. Each sample was loaded for qRT-PCR

with three technical replications.

2.3. Nlhdac knockdown and fecundity

2.3.1. RNAi and fecundity assay

The dsRNAs were synthesized using T7 high-yield transcrip-

tion kit (Vazyme) according to the manufacturer’s

instructions with primers containing the T7 RNA polymerase
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promoter at both ends (electronic supplementary material,

table S1). The amplified sequences were verified by Sanger

sequencing. The dsRNA injection was carried out as in our

previous method [36,37]. Briefly, each fourth-instar individ-

ual was microinjected with approximately 150 ng of

dsRNA. After injection, insects were maintained on fresh

rice seedlings, which were renewed every 3 days.

Both virgin females and males at 3 days after adult eclo-

sion were collected for fecundity analysis. Each female was

allowed to match with two males in a glass tube. Insects

were removed at designated time (5 or 10 days) and eggs

counted under a stereomicroscope (Leica S8AP0).

2.3.2. Western blot analysis

Fourth-instar nymphs were treated with dsGfp, dsNlHdac1 or

dsNlHdac4, and raised to adults. For immunoblot analysis of

H3 and H4 acetylation, ovaries were dissected from females

(n ¼ 50) at 0–6 h after eclosion, and total histones were

extracted using the EpiQuik total histone extraction kit (Epi-

gentek). For immunoblot analysis of vitellogenin, the fat

body was dissected from females (n ¼ 50) at 3 days after eclo-

sion. Equal amounts of protein were loaded for each lane on

SDS-PAGE gel. Western blotting was performed with anti-

bodies of acetyl-histone H3 antibody sampler kit (Cell

Signaling Technology), histone H3 acetylation antibody

panel pack II (Epigentek), acetylhistone H4 antibody sampler

kit (Cell Signaling Technology) and anti-vitellogenin mAb.

Immuno-reactivity was imaged with the Molecular Imager

ChemiDoc XRSþ system (Bio-Rad).

2.4. RNA-seq

2.4.1. Construction of cDNA libraries for Illumina sequencing

Fourth-instar nymphs (0–24 h interval after ecdysis) were

injected with the dsRNA targeting either NlHdac1 or Gfp.
At 0–6 h after adult eclosion, ovaries were dissected either

from dsNlHdac1- (dsHdac1_Ovary) or dsGfp-treated females

(dsGfp_Ovary) for RNA preparation. Total RNA was isolated

from 150 ovaries using RNAiso Plus (Takara) following the

manufacturer’s protocol. Experiments were performed in

triplicate with three independently isolated RNA samples.

A total of 3 mg of RNA per sample was used as input

material for RNA sample preparations. Sequencing libraries

were generated using NEB Next UltraTM RNA Library Prep

Kit for Illumina (NEB) following the manufacturer’s rec-

ommendations, and index codes were added to attribute

sequences to each sample. In order to select cDNA fragments

of 250 � 300 bp in length, the library fragments were purified

with AMPure XP system (Beckman) and library quality was

assessed on the Agilent Bioanalyzer 2100 system. The cluster-

ing of the index-coded samples was performed on a cBot

Cluster Generation System using TruSeq PE Cluster Kit

v3-cBot-HS (Illumina) according to the manufacturer’s

instructions. After cluster generation, the library preparations

were sequenced on the Illumina platform Hiseq X ten and

125/150 bp paired-end reads were generated.

2.4.2. Read mapping, normalization and quantification of
expression differences

The clean reads were generated after removing adapter,

ploy-N and low-quality reads from raw data. The clean
reads were aligned to the reference BPH genome data

(GCA_000757685.1_NilLug1.0) using HISAT2 (v. 2.0.4) [45].

HTSeq (v. 0.9.1) [46] was used to count the read numbers

mapped to each gene. The number of fragments per kilobase

of transcript sequence per million base pairs sequenced

(FPKM) was used to calculate the gene expressions. The

mapped reads of each sample were assembled by CUFFLINKS

(v. 2.1.1) in a reference-based approach, and then the novel

genes were predicted by CUFFLINKS (v. 2.1.1) [47].

Differential expression analysis between dsHdac1_Ovary

and dsGfp_Ovary was performed using the DESeq R pack-

age (v. 1.18.0) [48]. Genes with an adjusted p-value , 0.05

found by DESeq were assigned as differentially expressed

genes (DEGs). Gene Ontology (GO) enrichment analysis of

DEGs was implemented by the GO seq R package [49]

which could correct the gene length bias. The pathways

enrichment of all DEGs was analysed in the KEGG pathway

[50], and KOBAS software [51] was used to test the statistical

enrichment of DEGs in KEGG pathways.

2.5. NlHdac knockdown and male fertility

2.5.1. Sperm viability assay

The sperm viability was determined using the Live/Dead

sperm viability kit (Invitrogen) according to the manufac-

turer’s instructions. Briefly, we firstly dissected testis from

30 individual males at 3 days after eclosion. Second, the

semen was collected by cutting off the vas deferens, and

subsequently pooled into 300 ml of buffer (10 mM HEPES,

150 mM NaCl, 10% BSA, pH 7.4). Third, SYBR 14 dye was

added to semen solution, followed by incubation for 10 min

at 368C. After that, the solution was incubated with propi-

dium iodide for another 10 min. Finally, the numbers of

green (live) and red (dead) sperm in a 20 ml sample were

counted using a Zeiss LSM 780 confocal microscope (Carl

Zeiss MicroImaging). Three independent replications were

performed.

2.5.2. Recording of courtship behaviour

Fourth-instar nymphs were injected with dsGfp or

dsNlHdac1. For one pair-mating assay, one dsNlHdac1-treated

male (3 days after eclosion) and one wild-type female (3 days

after eclosion) were confined by a glass tube containing a

single rice stem. The camera of an iPhone 6 cell phone was

used to film the process of copulation from 20 insect pairs.

Recording started when a female and a male were paired,

and ended after 20 min. The dsGfp-treated males were

allowed to match with wild-type females, which served as

parallel controls. For the competitive mating assay, one

dsNlHdac1-treated male, one dsGfp-treated male and one

wild-type female were put together in one glass tube.

Recording ended once the female finished copulation.

2.5.3. Detection of acoustic signals

The acoustic signals of BPH were sampled and analysed as in

a previous report [52]. Briefly, fourth-instar nymphs were

treated with dsRNAs targeting Gfp or NlHdac1. At 3 days

after adult eclosion, one wild-type female was matched

with either one dsGfp- or one dsNlHdac1-treated male. The

acoustic signals were recorded with Adobe AUDITION, and
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MATLAB was used for data analysis. Recording of acoustic

signals started once a female and a male were matched,

and ended when the female finished copulation.
2.6. Image acquisition and data analysis
Images of insects and ovaries were captured with a DFC320

digital camera attached to a LEICA S8AP0 stereomicroscope

using the digital imaging system LAS (v. 3.8). Statistical

analysis was performed using SPSS (v. 20) and Microsoft

EXCEL. Means were compared using two-tailed Student’s

t-test at the significance levels set at *p , 0.05 and **p � 0.01.
3. Results
3.1. Identification and characterization of NlHdac genes

in BPH

3.1.1. Identification of NlHdac genes in BPH

To comprehensively identify members of the HDAC family in

BPH, we BLAST searched against its genomic [33] and

transcriptome databases using the D. melanogaster HDAC

proteins as query sequences. We identified 12 putative

genes encoding HDACs, a number comparable to Drosophila,

which has 10 members [53]. Out of 12 members in BPH, six

shared similarity with the classic HDAC family of zinc-

dependent deacetylases, designated NlHDAC1, NlHDAC3,

NlHDAC4, NlHDAC6, NlHDAC11 and NlHDAC11_like

(NlHDAC11_l); the remaining six members were close to

the sirtuin family of NADþ-dependent deacetylases, desig-

nated NlSIRT1–4, NlSIRT6 and NlSIRT7. The classical

HDAC and the sirtuin families contained open reading

frames ranging from 363 to 1118 and 302 to 783 amino acid
residues (figure 1a), respectively. Computer analysis revealed

that each NlHDAC possessed one HDAC domain except for

NlHDAC6 which had two HDAC domains and one zinc

finger domain (figure 1a). Additionally, a catalytic core

domain of the sirtuin family was predicted in NlSIRT1–7

(figure 1a). A phylogenetic analysis based on 70 HDAC

orthologues from 19 species suggested that six NlHDACs in

BPH were classified into three classes (figure 1b):

NlHDAC1 and NlHDAC3 in class I, NlHDAC4 and

NlHDAC6 in class II, and NlHDAC11 and NlHDAC11_l in

class IV. The results also assigned NlSIRT1–7 together with

their orthologues to class III (figure 1b), which formed an

independent branch separated from the classical HDAC

family. This phenomenon is consistent with the previous

classification of the HDAC family. These events strongly

indicated that the newly identified genes in BPH might

encode proteins with HDAC enzymatic activity.
3.1.2. Spatio-temporal expression patterns of HDACs in BPH

To better understand the function of Hdac, we first investi-

gated their expressions across developmental stages using

qRT-PCR. Our results revealed that all NlHdac and NlSirt
genes except for NlHdac1, NlHdac6, NlSirt4, NlSirt6 and

NlSirt7 had relatively stable expression levels throughout all

life developmental stages (figure 2a,b). Higher levels of

NlHdac1, NlSirt6 and NlSirt7 were expressed at the egg

stage, indicating that they might play important functions

in egg development; By contrast, NlHdac6 and NlSirt4 tran-

scripts were abundant in nymph and adult stages,

indicating that they might contribute more to organism

growth.

Next, we determined tissue-specific expression profiles of

the HDAC family in adult females. In general, most genes

were widely expressed in all tissues examined, except for
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NlHdac1, NlHdac6, NlSirt6 and NlSirt7 (figure 3a,b). The

NlHdac6 almost solely occurred in the gut tissue (figure 3a);

however, NlHdac1, NlSirt6 and NlSirt7 had considerably

higher levels in the ovary relative to other tissues, suggesting

they were involved in ovary development and oogenesis.

3.2. NlHdac knockdown and female fecundity

3.2.1. Knockdown of NlHdac1, NlHdac3 or NlHdac4 leads to
female infertility

To investigate whether the zinc-dependent HDACs play roles

in BPH fertility, fourth-instar nymphs were challenged with

corresponding dsRNAs targeting each classical NlHdac
gene. The qRT-PCR analysis showed that microinjection of

dsRNA significantly reduced expression of each gene relative

to the dsGfp treatment (electronic supplementary material,

figure S1). After adult eclosion, females were allowed to

mate with males to deposit eggs for 10 days. Both dsNlHdac1-

and dsNlHdac4-treated females produced very few eggs

(figure 4a), in contrast to more than 200 eggs produced by

dsGfp-treated females, which served as a parallel control.

Because most dsNlHdac3-treated females failed to survive

for 10 days during adulthood, we counted the amount of

eggs laid within the first 5 days after adult eclosion. Simi-

lar to dsNlHdac1- and dsNlHdac4-treated females,

dsNlHdac3-treated individuals were nearly infertile

(figure 4b). In addition, knockdown of NlHdac6,
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NlHdac11 or NlHdac11_l slightly decreased BPH fecundity

(figure 4a), among which the result for dsNlHdac11 was

significant compared to dsGfp treatment. These obser-

vations indicate that the zinc-dependent HDACs were

involved in BPH fecundity, with NlHDAC1, NlHDAC3

and NlHDAC4 playing central roles.

Next, we investigated whether the NADþ-dependent

HDACs (class III) affected female fecundity. Similar

amounts of eggs were produced by females treated with

dsNlSirt1, dsNlSirt2, dsNlSirt3, dsNlSirt4, dsNlSirt6 or

dsNlSirt7 compared with dsGfp treatment (figure 4c),

implying that these HDACs played marginal roles in

BPH fertility.
3.2.2. Knockdown of NlHdac1, NlHdac3 or NlHdac4 leads to
undeveloped ovaries or malformed ovipositor

Because severe defects in egg deposition were derived from

dsNlHdac1, dsNlHdac3 and dsNlHdac4, we subsequently

focused on these three genes to better understand the under-

lying mechanism. First, we examined external reproductive

organs of females after dsRNA treatment. We noted that

first valvifers of dsNlHdac1- or dsNlHdac3-treated females

extended more widely than those of dsGfp-treated females

(figure 5). Closer inspection showed that knockdown of

NlHdac1- or NlHdac3 led to a loosely organized ovipositor,

which is usually closely compact with ventral, inner and

dorsal valvulae as seen in dsGfp-treated females. To success-

fully deposit eggs into a rice stem, BPH has to penetrate

through rigid rice sheaths with its ovipositor, and so mal-

formed ovipositors might severely impair egg deposition.

For dsNlHdac4-treated individuals, there was no discernible

difference in morphology (figure 5). Second, we examined

ovary development in females at 3-day- and 5-day-adult-

hood. For dsGfp-treated females, ovaries were fully

developed, and each ovary tube was filled with a banana-

like oocyte (figure 5). By contrast, ovaries of dsNlHdac1- or

dsNlHdac4-treated 3-day-females were small and poorly

developed, and remained immature up to 5 days (figure 5),

indicating impaired ovary maturation and oogenesis. Unex-

pectedly, dsNlHdac3-treated females had normal ovaries

similar to those of dsGfp-treated females, albeit the former

were infertile (figure 5). Consequently, we ascribed infertility
in dsNlHdac3-treated females and dsNlHdac1- or dsNlHdac4-

treated females to ovipositor malformation and immature

ovaries, respectively.
3.2.3. NlHDAC1 is a major deacetylase in BPH ovary

Because HDAC can catalyse the removal of acetyl groups

from lysine side chains on core histones, knockdown of

Hdac would hypothetically increase acetylation levels of

certain lysine sites on histones (hyperacetylation). To

gain further insight into the regularity of ovary develop-

ment in dsNlHdac1- or dsNlHdac4-treated females, we

surveyed the acetylation status of histones H3 and H4 by

western blot analysis using commercially available anti-

acetyl antibodies. The results showed that knockdown of

NlHdac1 not only substantially increased acetylation

levels of five lysine sites on histone H3 (H3K9, H3K14,

H3K18, H3K23 andH3K27), but also four lysine sites on

histone H4 (H4K5, H4K8, H4K12 and H4K16), compared

to the basal level of histone acetylation in dsGfp-treated

ovaries (figure 6). This result suggests that NlHDAC1

widely deacetylases histones rather than targeting specific

lysines on histones in the ovary. In a concurrent trial, no

change of acetylation level was observed in dsNlHdac4-

treated ovaries compared to dsGfp treatment (figure 6).

The above evidence indicates that NlHDAC1 was a major

deacetylase in the BPH ovary, and played a vital role in

ovary maturation.

In insects, vitellogenin is the main resource for suste-

nance of developing eggs [54,55], and silencing either of

vitellogenin or its receptor gene phenocopied the dsNlHdac1-

or dsNlHdac4-treatment, leading to arrested development

of ovaries [56]. To investigate whether vitellogenin contrib-

utes to the defects of ovary development in dsNlHdac1- and

dsNlHdac4-treated females, we then determined the

vitellogenin expression in the fat body, the main organ

producing vitellogenin in insects. Western blot analysis

demonstrated that knockdown of either NlHdac1 or

NlHdac4 produced similar amounts of vitellogenin com-

pared to the dsGfp treatment (electronic supplementary

material, figure S2). This indicated that NlHDAC1 and

NlHDAC4 regulated ovary development through unknown

factors, not through vitellogenin.
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3.3. NlHDAC1 regulates ovary maturation via multiple
signalling pathways

Since chromatin modification transcriptionally changes gene

expression, we collected ovaries from females treated with

either dsNlHdac1 or dsGfp for RNA-seq (electronic supplemen-

tary material, file S1). Our results revealed that 5725 (25.5%)

genes were differentially expressed genes (DEGs) with

adjusted p-value , 0.05, among which 3180 (14.2%) genes

had higher and 2545 (11.3%) had lower expression in ovaries

treated with dsNlHdac1, compared with dsGfp (figure 7a; elec-

tronic supplementary material, additional file S1). Further

analysis demonstrated that these DEGs were mapped to 116

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

including the mTOR, MAPK, Notch, Hippo and Wnt signal-

ling pathways associated with cell growth, proliferation and

differentiation (figure 7b). The mTOR signalling pathway

received our attention because a previous report showed that

knockdown of NlTor in BPH females arrested ovary develop-

ment and oogenesis [39]. Accordingly, we first verified the

downregulation of NlTor in dsNlHdac1-treated ovaries by

qRT-PCR (electronic supplementary material, figure S3). Sub-

sequently, we knocked down NlTor in BPH females, which

led to undeveloped ovaries compared to dsGfp-treatment

(figure 7c). This phenomenon indicated that NlHDAC1 regu-

lated ovary maturation and oogenesis through multiple

signalling pathways including the mTOR pathway.



157

137

117

97

77

57

37

17

–3
–10 –5 0

up-regulated: 3180

down-regulated: 2545
padj > 0.05

–l
og

10
(p

ad
j)

mTOR signalling pathway

Notch signalling pathway

Hippo signalling pathway-fly

FoxO signalling pathway

Wnt signalling pathway

RNA transport

protein processing

ribosome biogenesis

purine metabolism

0 10 20 30
DEGs number

40 50 60

MAPK signalling pathway-fly

log2 (fold change)
5

3-day 5-day

500 mm

ds
G

fp
ds

N
lT

or

10

(b)

(a) (c)

Figure 7. Differentially expressed genes (DEGs) in ovary upon NlHdac1 knockdown. (a) Numbers of upregulated and downregulated genes in dsNlHdac1-treated
ovaries compared to the dsGfp treatment. (b) Selected KEGG pathways derived from DEGs (10 of 116 enriched KEGG pathways). (c) Phenotype of ovaries upon NlTor
knockdown. Ovaries treated with dsGfp served as the parallel control.

× wt (      )

dsG
fp (  

    )

300

200

100

de
po

si
te

d 
eg

gs
/1

0 
da

ys

0

ds
NlH

da
c1

 (  
    )

ds
NlH

da
c3

 (  
    )

ds
NlH

da
c4

 (  
    )

ds
NlH

da
c1

1 (
      )

wt (      )×
wt (      )

unfertilized

200 mm

dsGfp dsNlHdac1 dsNlHdac3 dsNlHdac4 dsNlHdac11

(a)

(b) (c)

**

Figure 8. Fecundity of males with gene knockdown and phenotype of eggs
produced. Fourth-instar nymphs were treated with dsRNAs targeting each
designed gene. At 3 days after adult eclosion, dsRNA-treated males were
allowed to mate with wild-type females. (a) Number of eggs produced in
paired mate assay. Wild-type females were mated with males that were pre-
viously treated with either dsGfp (n ¼ 17), dsNlHdac1 (n ¼ 17), dsNlHdac3
(n ¼ 18), dsNlHdac4 (n ¼ 17) or dsNlHdac11 (n ¼ 18). Each circle represents
eggs produced by an individual female. Bar represents mean+ s.e.m. Statisti-
cal comparisons between two groups were performed using two-tailed
Student’s t-test (**p , 0.01). (b) Morphology of eggs deposited in paired
mate assay. The eye pigmentation is indicated by arrow heads. (c) An unferti-
lized egg was deposited by a virgin wild-type female, which showed no eye
pigmentation across the egg stage, and never hatched. wt, wild-type.

rsob.royalsocietypublishing.org
Open

Biol.8:180158

8

3.4. NlHdac knockdown and male fertility

3.4.1. Knockdown of NlHdac1 impairs fertility of BPH males

Given that knockdown of NlHdac1, NlHdac3 and NlHdac4
led to female infertility, it was possible that they also

affected male fertility. Accordingly, males treated with

dsNlHdac1, dsNlHac3 or dsNlHdac4 were allowed to mate

with wild-type females. Subsequently, eggs deposited in

10 days were collected and analysed. Knockdown of

either NlHdac3 or NlHdac4 resulted in a similar amount of

eggs compared with dsGfp treatment (figure 8a).

However, wild-type females that mated with dsNlHdac1-

treated males deposited significantly fewer eggs

(figure 8a). Furthermore, the dsNlHdac1-treated eggs

failed to accumulate eye pigmentation, a characteristic hall-

mark of egg development, even up to 6 days after egg

deposition (figure 8b; electronic supplementary material,

figure S4). This observation was reminiscent of unfertilized

eggs, which showed no eye pigmentation throughout the

whole egg stage (figure 8c). Conversely, dsNlHdac3- and

dsNlHdac4-treated eggs exhibited the same eye pigmenta-

tion as dsGfp-treated eggs (figure 8b), suggesting that

these eggs were fertilized. In all, these observations indicate

that NlHdac1 but not NlHdac3 or NlHdac4 played a critical

role in male fertility.

Next, we examined testis development and sperm viabi-

lity in dsNlHdac1-treated males. The dsNlHdac1-treated

males had moderately smaller accessory glands than dsGfp-

treated males (figure 9a). However, there was no significant

difference in sperm vitality between dsNlHdac1- and dsGfp-

treated males (figure 9b,c), indicating that infertility of

dsNlHdac1-treated males was due to factors other than

sperm vitality.
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3.4.2. Wild-type females reject copulation with dsNlHdac1-
treated males

Because wild-type females that mated with dsNlHdac1-

treated males produced unfertilized-like eggs, and because

mating is a prerequisite for fertilized eggs, we performed a

paired-mating assay using dsNlHdac1-treated males and

wild-type females. The courtship of normal BPH males con-

sists of a series of behaviours prior to copulation, including

orientation toward the female, abdomen vibration for court-

ship song generation, tapping and attempted copulation

[57] (also see figure 10). In the paired mating assay (n ¼
20), the dsNlHdac1-treated males actively approached the

wild-type female and subsequently attempted copulation

soon after the virgin wild-type female emitted the acoustic

signal by vibrating her abdomen (electronic supplementary

material, movie S1). However, the wild-type female vigor-

ously rejected copulation either by walking away when the

male approached, or by kicking toward the male prior to gen-

ital contact, or by failing to raise her abdomen (electronic

supplementary material, movie S1). In the parallel exper-

iment, the dsGfp-treated males (n ¼ 20) successfully

copulated with the wild-type female as expected (electronic

supplementary material, movie S2). It took about 200 s for

dsGfp-treated males to finish copulation after female
vibration (electronic supplementary material, figure S6a),

and copulation duration was approximately 100 s (electronic

supplementary material, figure S6b). To confirm the above

observation, we next performed a mate choice assay (n ¼
20). When presented simultaneously with a choice of dsGfp-

and dsNlHdac1-treated males, the wild-type female 100%

preferred mating with the dsGfp-treated male (electronic sup-

plementary material, movie S3). These observations indicated

that NlHdac1-knockdown somehow impaired male courtship,

thus leading to failed copulation.

3.4.3. Males with NlHdac1 knockdown cannot make courtship
songs

Given that both male and female BPHs emit acoustic signals

prior to mating, which serve as an important cue used by the

female to recognize its mate [58], we recorded acoustic sig-

nals during the single-pair mating assay. The acoustic

signals are produced through abdominal vibration by males

and females and are transmitted through rice plants

[59–61]. The pattern of acoustic signals (courtship songs)

from the wild-type male consists of several rapid pulses

(chirp song) and heavily damped pulses (buzz song)

(figure 11a), whereas courtship from the wild-type female

consists of rhythmic repeated pulses (figure 11b). For a
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single pair of dsNlHdac1-treated male and wild-type female

(n ¼ 20), courtship songs only from the female but not the

male were recorded (figure 11d). In the parallel control exper-

iment (n ¼ 20), we readily detected courtship songs from both

wild-type females and dsGfp-treated males (figure 11c). These

events indicated that dysfunction of NlHDAC1 impaired the

ability of BPH males to make courtship songs, thus leading

to failed copulation, and is possibly the main reason for

infertility of dsNlHdac1-treated males.

4. Discussion
In this study, we identified 12 members of the HDAC family

in BPH, including six members of the classical HDAC family

(NlHDACs) and the remaining six members of the sirtuin

family of NADþ-dependent deacetylases (NlSIRTs). The

RNAi-based functional analysis indicated that all the NlHdacs

were more or less involved in female fecundity, with

NlHdac1, NlHdac3 and NlHdac4 playing the most important

roles. Notably, knockdown of NlHdac1, NlHdac3 or NlHdac4
led to female infertility (figure 4a,b). This effect was consistent

with the egg-stage dependent (figure 2a) and ovary-biased

expression pattern of NlHdac1 (figure 3a). By contrast, NlSirts
had no effect on female fecundity via RNAi silencing analysis

(figure 4c). More evidence showed that the infertility of

dsNlHdac1- or dsHdac4-treated females was most probably

due to undeveloped ovaries (figure 5), but dysfunction of

NlHdac3 led to a malformed ovipositor that might render

females unable to deposit eggs inside the rice stem (figure 5).
4.1. NlHDAC1 is the main histone deacetylase in ovaries
of BPH

In attempting to establish a functional link between

acetylated lysines and undeveloped ovaries caused by

NlHdac1- or NlHdac4-knockdown, we examined the acety-

lation level in a subset of histones H3 and H4 in ovaries

with available anti-acetylation antibodies. Western blot

analysis showed that knockdown of NlHdac1 led to hyper-

acetylation of all lysine side chains on histones instead of

targeting a specific one (figure 6), indicating that

NlHDAC1 was a major deacetylase in the BPH ovary.

This finding is consistent with previous observations for

Drosophila and mouse cell lines. Silencing of Hdac1 in Dro-
sophila S2 cells, but not of the other Hdac family members,

led to increased histone acetylation [25]. In embryonic stem

cells of mouse, Hdac1 null led to modest hyperacetylation

of histones H3 and H4, suggesting that HDAC1 was a

major deacetylase in these cells [62]. Unfortunately, the

general hyperacetylation pattern of dsNlHdac1 prevented

us further identifying specific lysine residues that were

responsible for regulating ovary development in BPH. In

addition, our parallel experiments showed that ovaries har-

bouring NlHdac4-knockdown had similar levels of histone

acetylation to the dsGfp treatment (figure 6), indicating

that NlHDAC4 played a marginal role in histone

acetylation in ovaries. Alternatively, NlHDAC4 could dea-

cetylate an additional subset of lysine residues, which were

neglected by us in this study. Hence, the detailed
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regulatory mechanism of NlHDAC4 on ovary development

needs to be resolved in the future.
4.2. Transcriptomic analysis in ovaries with NlHDAC1
knockdown

Contributing to deacetylase activity, HDACs are widely

believed to remove the acetyl groups from lysine side

chains on histones and thereby favour transcriptional repres-

sion through chromatin compaction [8,63]. Given that

NlHDAC1 was found to be a major deacetylase in BPH ovar-

ies, we investigated the genome-wide transcriptional change

by RNA-seq after gene knockdown (electronic supplemen-

tary material, Additional file S1). Compared to the

dsGfp-treated ovary, there were 5725 (25.5%) DEGs after

NlHdac1 knockdown. Among them, 3180 were significantly

upregulated, giving strong support to the conventional

notion of HDACs as transcription repressors [64]. However,

we also found that knockdown of NlHdac1 downregulated

expression of 2545 genes, a similar number to that of upregu-

lated genes. A similar phenomenon was also observed in

Hdac1-null embryonic stem cells of mouse, in which 4% of

genes were upregulated and 3% were downregulated [8,62].

Additionally, Drosophila treated with the HDAC inhibitor

4-phenylbutyrate resulted in upregulated or downregulated

expression of hundreds of genes [65]. These data strongly
suggest that NlHDAC1 serves as both a transcriptional

repressor and an activator in BPH ovaries.

Among the 5725 DEGs, the category of metabolic path-

ways was the most enriched (373 genes) in KEGG analysis,

followed by several well-known signalling pathways includ-

ing mTOR, MAPK, Wnt and Hippo signalling pathways

(electronic supplementary material, table S6). These data

indicated that NlHDAC1 might regulate gene expression

via cross-talking with multiple signalling pathways. The

mTOR signalling pathway coordinates cell growth with

environmental conditions and plays a fundamental role in

cell and organismal physiology [66]. The MAPK pathways

sense aspects of the extracellular environment and regulate

a variety of cellular processes, including proliferation and

differentiation [67]. The Wnt signalling pathway is important

for stem cell renewal, cell proliferation and cell differentiation

both during embryogenesis and adult tissue homeostasis

[68,69]. The Hippo pathway is a universal governor of

organ size, tissue homeostasis and regeneration, which regu-

lates cell proliferation, differentiation and spatial patterning

in organ development [70,71]. Among them, the mTOR sig-

nalling pathway received particular attention because a

previous report showed that NlTor-knockdown in BPH

females arrested ovary development and oogenesis [39].

Hansen et al. [72] reported that knockdown of Tor inhibited

vitellogenesis in the case of the mosquito Aedes aegypti, thus

inhibiting egg development. In this study, we verified that

NlHdac1-knockdown reduced NlTor transcripts by qRT-PCR
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(electronic supplementary material, figure S3), and observed

undeveloped ovaries in dsNlHdac1-treated females

(figure 7c). Taken together, it is plausible that NlHDAC1

regulated ovary maturation and oogenesis in part through

the mTOR signalling pathway. Unfortunately, we were

unable to test this proposal via a rescue experiment because

of the lack of genetic tools to investigate activation of the

mTOR pathway in females with NlHdac1-knockdown. In

addition, given that NlHDAC1 serves as an overall regulator

of chromatin modification, it is difficult to determine a par-

ticular pathway that is specifically involved in ovary

maturation and oogenesis.

4.3. dsNlHdac1-treated males failed to make courtship
songs

Courtship songs have evolved in association with mate recog-

nition and mate preference, and serve as attractive signals in

most animals [73]. Notably, NlHdac1-knockdown males

failed to make courtship songs (figure 11). As a result,

wild-type females rejected mating with dsNlHdac1-treated

males in the paired mate assay (electronic supplementary

material, movie S1), overwhelmingly preferring dsGfp- over

dsNlHdac1-treated males in the mate competition assay (elec-

tronic supplementary material, movie S3). These results

demonstrate that NlHDAC1 played an essential role in court-

ship and mating success of BPH males. At present, there is

little knowledge of the underlying mechanism by which

NlHDAC1 affects courtship song. In Drosophila, courtship

song is specified by a fairly small set of neurons that express

a duet of sex hierarchy genes, doublesex and fruitless [74–76].

An additional study indicated that HDAC1 regulated the

establishment of a sexually dimorphic single-neuron by inter-

acting with the Bonus and Fruitless complex, and then

affected courtship in Drosophila [77]. Based on these studies,

it will be of interest to determine whether NlHDAC1 regu-

lates courtship songs through affecting Fruitless-expressing

neurons in BPH.

The migratory BPH feeds exclusively on rice, and, in East

Asia, only overwinter in tropical or subtropical areas (Viet-

nam and southern China). In spring and summer, they

migrate northward as rice becomes available in temperate

areas of China, Japan and Korea [78,79], thus causing massive

outbreaks. Flight is energetically costly, and fitness trade-offs
between flight capability and life-history traits exist.

Migratory individuals prolonged the age at first reproduc-

tion, and produced fewer eggs than sedentary individuals

[80]. As the most abundant post-translational modifications,

whether the reversible acetylation of histones and HDACs

contribute to this process warrants further investigation.
5. Conclusion
We identified 12 members of the HDAC family in BPH.

Sequence analysis revealed that the classic HDAC family of

zinc-dependent deacetylases (NlHDAC) and the sirtuin

family of NADþ-dependent deacetylases (NlSIRT) contained

six members each. Fecundity assay showed that RNA-

mediated knockdown of NlHdac1, NlHdac3 and NlHdac4 but

not other members played essential roles in female fertility

through regulating ovary maturation or ovipositor develop-

ment. The NlHDAC1 is the main HDAC in ovaries of BPH,

and RNA-seq analysis showed that it regulated ovary matu-

ration by multiple signalling pathways. The BPH males with

NlHdac1 knockdown lost the ability to make courtship songs,

which impaired their mating success and led to male

infertility.
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