
Impacts of climate change on infestations
of Dubas bug (Ommatissus lybicus
Bergevin) on date palms in Oman
Farzin Shabani, Lalit Kumar and Rashid Hamdan Saif al Shidi

School of Environmental and Rural Science, University of New England, Armidale,
NSW, Australia

ABSTRACT
Climate change has determined shifts in distributions of species and is likely to
affect species in the future. Our study aimed to (i) demonstrate the linkage between
spatial climatic variability and the current and historical Dubas bug (Ommatissus
lybicus Bergevin) distribution in Oman and (ii) model areas becoming highly
suitable for the pest in the future. The Dubas bug is a pest of date palm trees that
can reduce the crop yield by 50% under future climate scenarios in Oman.
Projections were made in three species distribution models; generalized linear
model, maximum entropy, boosted regression tree using of four global circulation
models (GCMs) (a) HadGEM2, (b) CCSM4, (c) MIROC5 and (d) HadGEM2-AO,
under four representative concentration pathways (2.6, 4.5, 6.0 and 8.5) for the
years 2050 and 2070. We utilized the most commonly used threshold of maximum
sensitivity + specificity for classifying outputs. Results indicated that northern
Oman is currently at great risk of Dubas bug infestations (highly suitable
climatically) and the infestations level will remain high in 2050 and 2070.
Other non-climatic integrated pest management methods may be greater value
than climatic parameters for monitoring infestation levels, and may provide more
effective strategies to manage Dubas bug infestations in Oman. This would ensure
the continuing competitiveness of Oman in the global date fruit market and
preserve national yields.
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INTRODUCTION
Ommatissus lybicus, formerly classified as the “lybicus” variety of O. binotatus and
commonly described as the “Old World date bug” or “Dubas bug”, was elevated
taxonomically to the status of species as O. lybicus Bergevin (Asche & Wilson, 1989).
Renowned for its voluminous production of honeydew (Dowson, 1936), the Dubas bug
attacks date palms in the Mediterranean, which appear to be its sole host. Adult
females measure between five and six mm in length, vary from yellowish brown to
greenish in color and exhibit pairs of black dots on the base of the frons and pronotum,
as well as frequently on the top of the head and the seventh and eighth segments of the
abdomen. The wings are clear, with visible blood vessels concentrated at the apex,
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a distinctive characteristic of the family. Males are slightly smaller than females,
with increased proportion of wingspan to body length, a narrower abdomen and absence
of abdominal dots (Asche & Wilson, 1989; Howard et al., 2001).

Date palm regions such as Iran and specially Oman suffer regular Dubas bug
infestations, resulting in substantial losses (Abdullah, Lorca & Jansson, 2010; Blumberg,
2008). Over the last four decades, the species has become rated as the major date palm
pest of Oman, in terms of area and severity of infestation and consequent losses
(Mamoon, Wright & Dobson, 2016). Direct damage is caused by adults and nymphs
feeding on the plant sap and covering the surfaces of leaves with honeydew (Fig. 1),
leading to indirect damage through the progression of a sooty mold (Fig. 1) and a
resultant reduction in yield and date quality (Howard et al., 2001). Research shows
that direct damage occurs through the sucking of sap from leaflets and rachis during
spring and autumn (Kinaway & Al-Siyabi, 2012). Indirect damage is exemplified in the
deterioration of date palm fruits, including the fruit of trees planted beneath infested
palms, due to dust, dry leaflets and rot fungi attracted by the honey dew. Indirect
damage is exacerbated by females depositing eggs beneath the surface of the biaxial
frond, restricting photosynthesis. Gassouma (2004) has documented that a heavy Dubas
bug infestation can reduce yield by as much as 50%. A heavy infestation implies
thousands of the bugs per frond (Dowson, 1936), and generally occurs on mature
date palms, probably due to the greater protection afforded by larger trees (Klein &
Venezian, 1985). Higher humidity levels, denser plant spacing and greater shading
promote Dubas population growth, which can persist through dust-storms and
lengthy hot, dry periods (Howard et al., 2001). The Dubas population endured mild
Mediterranean winters but perished in the severe Israeli winter nights with the freezing
temperatures of 1982/1983.

Figure 1 (A) Dubas adults and nymphs suck sap and coat leaf surfaces. (B) Sooty mold development
on honeydew coated leaves of date palms in Oman. Full-size DOI: 10.7717/peerj.5545/fig-1
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Climate change presents a major threat to the global biodiversity and ecosystems,
on which humans are dependent (Rosenzweig et al., 2008). There is strong evidence
that climate change has already caused changes to distributions of species, and will
continue to do so (Paterson et al., 2017; Shabani, Kumar & Taylor, 2012; Shabani,
Kumar & Esmaeili, 2015; Shabani et al., 2013; Shabani et al., 2018; VanDerWal et al.,
2013), through alterations in phenology (Thackeray et al., 2010), physiology (Rosenzweig
et al., 2008), morphology (Walsh et al., 2016), demography and community
composition (Bellard et al., 2012) and the nature of ecological interactions (Parmesan,
2006). Extinctions at species level have been reported (Sinervo et al., 2010), with rates
of extinction projected to accelerate as climate change intensifies (Urban, 2015).
To minimize biodiversity losses, conservationists, resource managers and
decision-makers must adapt environmental policies and management practices
toward ameliorating the impact of climate change (Brooke, 2008).

Species distribution models (SDMs) allow the incorporation of climate change
scenarios into modeling, thus providing information on potential future species
distributions. Such analyses can highlight specific new areas that may in the future be at risk
of invasion, as well as identifying the important regions of biodiversity that may be affected.
Mapping potential future distributions can inform the strategic planning of biosecurity
agencies, prioritizing areas that should be targeted for eradication and determining those
areas’ containment tactics would be more cost-effective. Such models are alternatively
described as bioclimatic or ecological niche models (Fitzpatrick et al., 2007). On this matter,
a range of computer-based systems have been developed, designed for the modeling of
current or future distributions of the species. Examples of the most common of these
systems are CLIMEX (a mechanistic model), HABITAT, maximum entropy (MaxEnt),
boosted regression trees (BRT), random forests, generalized linear model (GLM) and
BIOCLIM (correlative models). The key component of the ecological niche modeling
approaches is estimation or characterization of species’ distributions in ecological space,
which can then be useful in understanding their potential distributions in geographic space
(Peterson, 2006). A greater capacity to model the impact of climate change on the
distributions of species will be invaluable toward this end (Da Silva et al., 2017;
Dawson et al., 2011; Peterson et al., 2017; Ramirez-Cabral, Kumar & Shabani, 2017;
Shabani, Kumar & Ahmadi, 2017; Soberon & Peterson, 2005).

Despite the potential devastation of the Dubas bug, this appears to be the first published
study that focuses on projecting the risk levels of colonization. Estimating future
distributions of the species under a variety of climate scenarios is of interest for regions
cultivating date palm, including Oman. Our study employed four global circulation models
(GCMs), (a) HadGEM2, (b) CCSM4, (c) MIROC5 and (d) HadGEM2-AO, under four
representative concentration pathways (RCPs) of 2.6, 4.5, 6.0 and 8.5, for two time
periods of 2050 and 2070 using GLM, MaxEnt, BRT. It should be noted that there are
19 (GCMs) in WorldClim database and in this study, we have selected four of them
randomly. We believe that climate change may influence the potential future distribution
of the Dubas bug and our analysis makes a positive contribution to the optimization of
date palm production, management and control of the Dubas bug.
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MATERIALS AND METHODS

Data collection area and pest distribution records
The data collection area covered 69 villages (300 locations) isolated from each other in
the northern governorates of Oman where date palm is cultivated. The total area of Oman
is about 310,000 km2; however, the data collection area was limited to the northern part of
Oman (North 26�00′N, 56�00′E and Far East 22�00′N, 59�00′E) where date palm is
cultivated as the main agricultural crop. Distribution data (1,708 occurrences) for the years
2007–2011 and 2015, was obtained from the Ministry of Agriculture of Oman.
Our database was extended through field trips in 2016, illustrated in Fig. 2. Using the
annual distribution data and linear Kriging interpolation method, we identified historical
changes of hotspots (directions between sample points that reflect annual variations in the
surface). A total of 20% of the records were reserved for model validation. The data
collection between 2007 and 2011 was carried out by local experts who were working at
Ministry of Agriculture of Oman, and then this project was stopped between 2011 and
2015 and then started again. It should be mentioned that the last field trip was undertaken
by our group in 2015 and the data is included in this study. We should also highlight
that there are some data available for the 2012–2014 period, but their accuracy is
questionable and thus we excluded them from our analysis.

Linkage between current spatial climatic variability and the Dubas bug
distribution
The climate data for the year 2007, 2008, 2009, 2010, 2011, 2015 and 2016 were
downloaded from the National Environment Satellite, Data and Information Service
website (https://www7.ncdc.noaa.gov/CDO/cdo). Here, we selected the closest
meteorological stations from the areas with the historical pest occurrence records.
This data contains the daily means of temperature, minimum temperature and maximum
temperature, wind speed, dew points, sea level pressure, station pressure, visibility,
maximum sustained wind speed and total daily precipitation. In technical terms, the
dew point is the temperature at which the water vapor in a sample of air at constant
barometric pressure condenses into liquid water at the same rate at which it evaporates.
The data was used to predict the difference in climate factors for all the infested locations
for each year using the inverse distance weighted interpolation method in ArcMap.
Then, the ordinary least squares (OLS) regression method was used to examine the
global relationship and the geographic weight regression (GWR) was used to find the
local spatial relationship between the infestation and the different climate factors for
each year. The GWR statistical model considers the spatial variance of the variables
and estimates the strength of their topographic relationships (Refer to Fotheringham,
Crespo & Yao, 2015). The GWR model formulation is:

yi ¼ b0ðui;viÞ þ �b1ðui;viÞxik þ ei

where i is the spatial point with coordinates (ui, vi). Accordingly, yi is the dependent
variable, xik is the kth independent variable, εi is an error term for the ith point.
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Figure 2 (A) Current climate suitability for Dubas bug. (B) Distribution data of the Dubas bug for of
the periods 2007–2011, 2015 and 2016. (C–I) Annual hotspots indicating areas with high density of the
pest for the period. Full-size DOI: 10.7717/peerj.5545/fig-2
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The first run of OLS showed a high variance inflation factor indicating a high level of
redundancy among explanatory variables. The factors showing high redundancy were
removed. The GWR was then run with the remaining factors.

Calibration area
In this research calibration of the models was based on 75% of the occurrence dataset
(training data) from 56�30′00″ to 59�00′00″, with the remaining 25% from 56�00′00″ to
56�30′00″ and 59�00′00″ to 59�30′00″ reserved for evaluating the performance of the
models. We purposefully selected testing points in those regions (western and eastern
Oman) that had geographic outliers. We believe that this gives a better basis for validation
of the model compared to selecting test points from regions of high occurrence data.

Distribution modeling approach
Biomod2 ensemble platform for species distribution modeling (Thuiller et al., 2009) was
used to predict suitable pest habitat, in R environment v. 3.4.4 (R Development Core Team,
2017). The method enables the simultaneous processing of a number of modeling
techniques to create a consensus, or “ensemble”, model (Araújo & New, 2007; Thuiller
et al., 2009). We used three methods, MaxEnt, GLM and BRT, to form an integrated
prediction of the pest preferred habitat with thirty replicates. The main motivation that led
to use three different mechanistic models was that each of the models relies to some
degree on parameterization against observational data, so they do not entirely avoid the
novelty challenge and their predictions are not necessarily superior to empirical models
(Fordham et al., 2018; Shabani, Kumar & Ahmadi, 2016). Additionally, it has been
suggested that on the species distribution modeling studies, it may be safer to utilize several
SDMs and ensemble the results (Shabani, Kumar & Ahmadi, 2016). In line with this
matter, Elith, Kearney & Phillips (2010) documented that the area that has been accessible
to the species of interest over relevant time periods represents the ideal area for model
development, testing and comparison.

Maximum entropy
The MaxEnt algorithm compares the interaction of variables on presence and background
data to establish the probability distribution approximating uniformity, subject to the
limitations of the spatial distributions observed and related environmental factors. This
method of minimizing relative entropy between presence and background data optimizes
the probability distribution representing MaxEnt (Phillips, Anderson & Schapire, 2006).

Generalized linear model
In GLM, the iterative weighted linear regression technique was used to arrive at the
estimated maximum likelihood of the parameters, with observations distributed in terms
of an exponential family and systematic effects made linear by suitable transformation.
For GLM, parametric functions were employed to link the variable of response to a
combination of linear and quadratic explanatory variables. The GLMs were fitted with a
standard polynomial approach together with an automatic stepwise model selection based
on the Akaike information criterion (AIC).
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Boosted regression tree
Boosted regression tree uses two multiple regression tree algorithms (by a binary division
of predictor space into rectangles, it relates predictor responses to establish expanses
with the most homogeneous responses to predictors) and boosting (an added procedure,
merging fitted trees for greater modeling accuracy). BRT was fitted using the “GBM”

package (Ridgeway, 2006) in R environment v. 3.4.4 (R Development Core Team, 2017)
with additional setting code recommended by Elith, Leathwick & Hastie (2008).

Bioclim variables, background data and provision of weights for
records of the species
Baseline climate was represented by the WorldClim current climate dataset of
BIOCLIM variables (www.worldclim.org). Here, we used WorldClim data of Version 1.4
with 2.5 min resolution grids. WorldClim is a high-resolution climate average for the
period 1961–1990, with global coverage and spanning the time period over which
the majority of occurrence records were collected. Possible future climates at global
scale incorporate four IPCC5 greenhouse gas concentration (GHC) trajectories, which
differ in terms of GHC emission peaks. The main objective of this study was to utilize
RCP of 2.6, 4.5, 6.0 and 8.5 for incorporation into the future climate scenarios in
the model projections. Our data has 2.5 min spatial resolutions. To eliminate model
complexity and screening explanatory variables, we used the jackknife analysis method
and calculated the pairwise Pearson correlation matrix of the variables to select the
more important variables showing low correlation (R < 0.7). We also checked the
importance of variables through the correlation coefficient from Pearson correlation
technique and the results were the same as jackknife outputs. Thus, bio7 (temperature
annual range (�C)), bio8 (mean temperature of wettest quarter (�C)), bio9 (mean
temperature of driest quarter (�C)), bio10 (mean temperature of warmest quarter (�C)),
bio11 (mean temperature of coldest quarter (�C)), bio15 (precipitation seasonality)
and bio16 (precipitation of wettest quarter (mm)) were selected. We note that in this
study, clamping was not used and to address the likelihood that the background data
would contain fewer records from localities of more recent colonization and those poorly
sampled, we denoted greater importance to records with less geographic proximity.
We took into account that without records measuring time expended and survey effort,
it is impossible to distinguish between unsuitable and under-sampled areas and that the
above-mentioned adjustments would unavoidably combine these two geographical
categories. For calculation of the weighting surface, we divided the total of weighted
records for each cell of the study area by the weighted number of terrestrial cells of
the specific area, using the Gaussian kernel method with standard deviations of
ArcGIS default values to eliminate the coastal edge effect. Thereafter, we adjusted the
resulting grid to maximum 20 and minimum 1, to exclude extreme values.
This weighting method, as advocated by Elith, Kearney & Phillips (2010), minimizes the
bias toward records from highly sampled areas over those from less sampled areas.
Background training data was generated using the kernel density layer and Hawths
Tools extension (v3.27) (Beyer, 2004).
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Threshold
There are many methods of thresholds selection, including setting 0.5 as the threshold
(default), which is widely used in ecology (Pearson et al., 2002), setting a specific level of
sensitivity or specificity (e.g., 95%) as desired or deemed acceptable (Cantor et al., 1999)
and setting thresholds to maximize the correlation between known and projected
distributions. A further method identifies a value that maximizes points correctly
classified; sensitivity plus specificity values; or Kappa, which incorporates both sensitivity
and specificity (Guisan, Theurillat & Kienast, 1998). We chose the commonly used
threshold of maximum sensitivity + specificity classifying outputs.

Global circulation models
There are many different GCMs in WorldClim database and we have selected the four
GCMs of HadGEM2, CCSM4, MIROC5 and HadGEM2-AO randomly. For example,
HadGEM2-ES is a model from the Hadley Centre Global Environmental Model associated
cycle of the fifth phase of the CMIP5 (Taylor, Stouffer & Meehl, 2012) which combines
dynamic vegetation, ocean biology and atmospheric chemistry, inclusive of greenhouse
gases emissions, aerosols, solar irradiance, ozone and others (Dike et al., 2015).
HadGEM2-ES demonstrates a high climate sensitivity of approximately 4.68 �C for a
doubling of CO2, placing it as one of the more efficient CMIP5 models (Andrews et al., 2012;
Dike et al., 2015) and couples an atmospheric and ocean model more realistically simulating
the uptake and retention of carbon dioxide at varying ocean depths (Heffernan, 2010).

The community climate system model (CCSM) is a coupled climate model used to
simulate the climate system of earth. Four individual models are coupled to simulate
simultaneously the planet’s atmosphere, oceans, land surfaces and sea-ice, using a
single coupling component. The CCSM enables fundamental research into Earth’s past,
present and future climate states of CESM1. The code base of CCSM4 has been frozen
and future updates will use the code base of CESM1, of which CCSM4 is a subset.
Although CESM1 supersedes CCSM4, all CCSM4 experiments may be run using the
CESM1 code base (Dike et al., 2015). Detailed information on the utilized GCMs and
their differences can be found in Lawrence et al. (2012), Watanabe et al. (2010) and
Baek et al. (2013).

Representative concentration pathways
Representative concentration pathway 2.6 assumes that the global warming will
increase from 0.4 to 1.6 and 0.3 to 1.7 �C between the years 2046 and 2064 and 2081 to
2100, respectively. RCP 2.6 also assumes that the mean global sea level will increase from
0.17 to 0.32 and 0.26 to 0.55 m, over the same periods (Stocker et al., 2013).

Representative concentration pathway 4.5 assumes that the global warming will increase
from 0.9 to 2.0 and 1.1 to 2.6 �C between the years 2046 and 2064 and 2081–2100,
respectively. Mean global sea level will increase from 0.19 to 0.33 and 0.32 to 0.63 m over
the same periods (Stocker et al., 2013).

Representative concentration pathway 6.0 assumes that the global warming will rise
from 0.8 to 1.8 and 1.4 to 3.1 �C between the years 2046 and 2064 and 2081–2100,
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respectively. Mean global sea level will increase from 0.18 to 0.32 and 0.33 to 0.63 m over
the same periods (Stocker et al., 2013).

Representative concentration pathway 8.5 assumes that the global warming will rise
from 1.4 to 2.6 and 2.6 to 4.8 �C between the years 2046 and 2064 and 2081–2100,
respectively. Mean global sea level will increase from 0.22 to 0.38 and 0.45 to 0.82 m over
the same periods (Stocker et al., 2013).

In this study, we focused on all four RCPs 2.6, 4.5, 6.0 and 8.5 to identify areas possibly
becoming highly suitable, unsuitable or areas with significant change compared to the
pest current suitability regions. In addition, the results of this paper at a global scale are
presented in the supplementary section.

Model validation
Using training and testing pest presence data (#1196 and #512, respectively), validation
was initially carried out using the area under curve (AUC) method. However,
as highlighted by other studies (Jiménez-Valverde et al., 2013; Lobo, Jiménez-Valverde &
Real, 2008; Peterson, Papeş & Soberón, 2008), AUC values can be misleading and unfairly
denigrate the accuracy of the model (Fourcade et al., 2014). AUC is considered a
reliable measure of discrimination ability but, when estimations are based only on presence
data, has been seen to have limitations in attaining ecological realism in modelled
distribution (Jiménez-Valverde, 2014; Lobo, Jiménez-Valverde & Real, 2008), we also
introduced true skill statistic (TSS) for validating our model. TSS is independent of
prevalence and equals ad�bc

aþcð Þ bþdð Þ where a signifies number of correctly predicted presence
cells; c number of presence cells incorrectly predicted as absence cells; b number of
absence cells incorrectly predicted as presence cells; and d number of correctly
predicted absence cells. It is essential to recognize that across our models, sensitivity and
specificity are mutually independent, as well as being independent of prevalence,
which represents the proportion of total cells that recorded species presence.
Allouche, Tsoar & Kadmon (2006) demonstrated that TSS represents an intuitive method
of SDM predictive performance measurement transposed into presence–absence
mapping. TSS produced results that are significantly correlated with those of the
threshold-independent AUC assessment (Allouche, Tsoar & Kadmon, 2006). AUC and
TSS values of our modeling were 0.94 and 0.89, respectively.

RESULTS
Positive linkage between current spatial climatic variability and
the Dubas bug distribution
Considering all examined climatic variables with the historical pest occurrence records,
our result showed that wind speed, minimum temperature and dew points were the three
factors that showed significant correlations in OLS model. The GWR determined
correlation coefficients were 0.05, 0.10, 0.12, 0.13, 0.11 and 0.05 for the year 2007, 2008,
2009, 2010, 2011, 2015 and 2016, respectively (Table 1). In most cases, the GWR
model showed improved R2 and AIC value, indicating the presence of spatial relation
between the infestation presence and these significant climate factors (Table 2).
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However, it should be noted that the R2 values are quite low, indicating that even
though there is a spatial relationship the strength of this is quite low. Given the large errors
that may be associated with various variables used in such analysis it would be prudent
to verify these results with other measures of correlation.

Hotspot changes, validation and projections for current climate
The results of the Kriging interpolation indicated annual regional spatial changes of
Dubas bug hotspots, of which the majority were in northern Oman (Fig. 2). Our analysis
revealed an increased percentage of high risk areas between 2007 and 2009, which
decreased between 2010 and 2011. These increased again in 2015 and 2016. The results
also revealed that hotspots in north-western Oman by 2010 and 2011 were smaller in size
than in the rest of the years analyzed, which could be due to unsuitability of climatic and/or
non-climatic factors such as removal offshoots, pesticides and fertilization.

Using the selected Bioclim variables and validation records under maximum sensitivity
+ specificity threshold, the results indicated that 97% of pest records fell within the high
favorability climate categories, as shown in Fig. 2. Projections under current climate
show that northern Oman has the most suitable climate while regions between 17–22�N
and 52–59�E having an unsuitable climate for Dubas bug occurrence (Fig. 2). Our
results also indicated that there are some regions with a marginally suitable climate for the
pest (22–23�N and 59–60�E).

Table 1 The results of geographic weight regression (GWR) model with the significant factor/s that
resulted from the ordinary least square regression (OLS) model for each year.

Year Factor/s R2

2007 MIN, DEWP 0.05

2008 DEWP 0.10

2010 WDSP, MIN, DEWP 0.12

2011 DEWP 0.13

2012 DEWP 0.11

2016 WDSP, MIN, DEWP 0.05

Note:
Min, mean daily minimum temperature; DEWP, mean daily dew points; WDSP, mean daily wind speed.

Table 2 R2 and Akaike’s information criterion (AIC) values of the ordinary least square regression
(OLS) and the geographic weight regression (GWR) models.

Year OLS GWR

R2 AIC R2 AIC

2007 0.05 874.4 0.05 875.0

2008 0.04 890.9 0.10 849.2

2010 0.12 852.9 0.12 846.0

2011 0.05 671.0 0.13 615.3

2012 0.01 918.0 0.11 854.4

2016 0.06 903.0 0.06 903
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Figure 3 The ensemble model outputs (Climatic suitability) for the Dubas bug using HadGEM2 (A
and E), CCSM4 (B and F), MIROC5 (C and G) and HadGEM2-AO (D and H), under RCP of 2.6 for
of the years 2050 and 2070. Full-size DOI: 10.7717/peerj.5545/fig-3
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Future projections
The future projections obtained from four GCMs, under four RCPs, indicated that
northern Oman will remain highly suitable for Dubas bug occurrence and is thus at greater
risk. However, all GCMs under all RCPs projected a slight reduction in areas of high
suitability class by 2070, compared to 2050. Figure 3 shows the ensemble model
outputs (climatic suitability) for the Dubas bug using HadGEM2, CCSM4, MIROC5 and
HadGEM2-AO, under RCP of 2.6 for of the years 2050 and 2070; refer to supplementary
file for the results of RCP of 4.5, 6.0 and 8.5 under different GCMs.

The future projections of four GCMs, under four RCPs, showed that areas with
marginal suitability comprise less than 1% of those areas with the high suitability,
but are significantly linked or adjacent to areas of high suitability, indicating a high risk of
future Dubas bug infestation.

DISCUSSION
The historical data analysis showed a significant spatial relation between the infestation
occurrence and a few climate factors. However, the results indicated a low correlation
coefficient for the relationship, assumed to be due to the use of binary data (presence
and absence) in the correlation, which is less powerful than using scale value data
(infestation levels). Further, the climate data was estimated using the nearest weather station
to the locations, rather than the real climate of the location whereas the tree canopies
and variation in intercropping and cultural practices affect the microclimate in each location
(Al-Kindi et al., 2017; Al Sarai Al Alawi, 2015; Al Shidi et al., 2018). An earlier investigation
showed that temperature had significant effects on the hatching of the Dubas bug eggs
(Al-Khatri, 2011). In addition, the author confirmed that temperature variations were
associated with variations of infestation and percentage of egg hatching in different locations,
seasons and years. A very recent study confirmed the relationship of solar radiation and
infestation levels of the Dubas bug (Shidi et al., 2018).

Oman lacks detailed data on irrigation methods, spacing of rows, pruning, removing or
retaining suckers, use of insecticides and fertilizers, plantation density per hectare and
removing unproductive palms, such that it is difficult to identify reasons for the lower
infestation rate between 2010 and 2011.

It is documented that temperature, moisture, windiness and snowfall, amongst other
climatic parameters, are major factors influencing the relationships of crops, pests and
diseases (Alkishe, Peterson & Samy, 2017; Lonsdale & Gibbs, 1996). Despite the Dubas
bugs’ overwhelming impact, there is limited information available on the biogeography
of this genus in relation to soil and climate. Although the foremost relationship is
between growth rate and temperature, survival ability at extreme temperatures is also
of crucial importance (Sangalang, Backhouse & Burgess, 1995).

Our findings indicated that northern Oman is currently at greater risk of Dubas bug
infestation and will remain so for 2050 and 2070. Integrating non-climatic pest
management methods might complement climatic parameters in monitoring infestation
levels in providing information to develop effective strategies to manage Dubas bug
infestations in Oman, thus maintaining yield levels and market competitiveness of dates
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from Oman. However, strategies for adaptation to climate change require creating a link
between a stated expectation on how global warming could affect species, habitats or
even people and clear objectives and actions that would best address these projected
climate changes (Poiani et al., 2011). Conservation effectiveness requires the
prioritizing of actions to ensure the continuation of particular species and habitat areas.
It is impossible to make conservation interventions for all species and priority decisions
should focus on which species to protect. Due to levels of uncertainty and complexity
in modeling, altering the prioritizing of certain species before others requires caution
(Mesgaran, Cousens & Webber, 2014). In this study, we incorporated the most commonly
used thresholds for output classification.

Defining the bioclimatic space in which a species can persist, and regions of continued
suitability within this space, may enhance persistence through periods of climatic stress.
Correlative, or mechanistic, niche modeling supports the identification of suitable sites.
Many previous studies have focused on the direct effects of climate change on particular
species. However, the indirect effects within biological communities and alterations to
fundamental natural resources may have substantial, complex and even exponential
impact on affected species. Thus, it may be the case that current research has not yet
mastered the complexity of interactions between invasive species, hosts and the impact
of climate change. Further, an ever increasing human population will itself be subjected to
the increasing effects of climate change, and the likelihood that human adaptation
responses will impact negatively on biodiversity (Watson & Segan, 2013).

Our findings are similar to that of Ferrocino et al. (2013), who concluded that the global
warming predicted for the future could induce an increase in the incidence of diseases
caused by plant pathogenic species. Governorate of countries projected to become suitable
or marginally suitable to the Dubas bug should develop and implement appropriate
policies and programs to assure agricultural safety, and develop some form of cash crop
biosecurity system. Strict policy in terms of transfer of soil, seed and water from one
country or continent to another would be the first necessary step to protect agricultural
products, in that there exists a body of literature showing that the disease can spread
easily through soil attached to machinery, agricultural tools, water and the movement of
plant debris from field to field or within a region or country.

Additional factors possibly affecting date quality include a less experienced, less
educated date palm workforce, ideally, a date palm plantation workforce requires training
in all aspects of Dubas bug identification and control, including a basic entomological
grasp of the life cycles of potential pests. Such training requires funding, or alternatively
economic incentives to traditional farming communities to preserve traditional
agricultural practices. It should be highlighted that our results mainly estimate the
fundamental ecological niche (climatic in nature), which for comparatively small regions
may coincide with the distributional area of a species. As we have seen, however,
this conclusion is subject to many caveats and conditions (refer to Soberon & Peterson 2005
for more clarification).

We should emphasize that assessments of impacts from anthropogenic climate
alteration depend on projections from climate models. Uncertainties in those have
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often been a limiting issue (Knutti & Sedláček, 2013); additionally they have stated
that the previous models on Climate Change Fifth Assessment Report (IPCC AR5)
are similar to that from those used in IPCC AR4 after accounting for the different
underlying scenarios. However, there differences between models and scenarios are
obvious and the uncertainties should not stop decisions being made. In our case,
we selected four different GCMs under four different RCPs for three different time
periods (current, 2050 and 2070) and our results demonstrated that northern Oman is
currently at great risk of Dubas bug infestations (highly suitable climatically) and the
potential infestation levels will remain high in 2050 and 2070. We note that we also
employed all four available RCPs (2.6, 4.5, 6.0 and 8.5) at a global scale and the results
again confirm that northern Oman, the areas under extensive date palm cultivation,
will remain at great risk of this pest (see the supplementary file). Thus other non-climatic
integrated pest management methods may be of greater value than climatic
parameters for monitoring infestation levels. Additionally, the adaptation of both
species (host and pest) with climate change is a possible and valid point but impossible
to cover.

Generally, successful pest control, particularly major infestations, depends on the
support of agricultural extension services. Extension officers, who should themselves be
well-trained, have a responsibility to train farmers, particularly in the dangers of
continuous use of chemical insecticides, rather than the safer and more efficient
alternative agents of control. Further measures could include teams of plant protection
officers, with a principal duty to inspect and assess Dubas bug infestations, as well as
forwarding unidentified arthropod pests to identification centers and laboratories for the
analysis of fungi.

CONCLUSION
This research has predicted areas conducive to the Dubas bug under future climate
scenarios, as well as the impact on northern Oman of the Dubas bug under projected
climate changes. The distribution maps based on the modeling provide a valuable tool for
the planning of appropriate agricultural production methods of the future. Relevant
information on areas projected as suitable for the pest can be obtained from these
maps (Fig. 3 and all figures provided in the supplementary file), that support long-term
planning for the management of date palm production and the modeling methods have
application for a variety of species.

This paper transfers two messages of “northern Oman is currently at great risk of
Dubas bug infestations and the infestations level will remain high in 2050 and 2070” and
“Other non-climatic integrated pest management methods may be greater value than
climatic parameters for monitoring infestation levels” to the decision makers.

Factors of significance in the research were: (a) temperature, precipitation and
humidity variables were easily accessible; (b) data on the historical distribution of the
Dubas bug was available and well-documented; and (c) the four GCMs were selected on
the basis of their (i) small horizontal grid spacing and (ii) clarity in representation of
current local climate conditions.
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Possible study limitations were the unavailability of data on irrigation methods,
plantation spacing, pruning and removal or retention of suckers, insecticides and
fertilizers, density of trees and the removal of unproductive palms, making it impossible to
assess the impact of non-climatic factors on levels of infestation. The modeling undertaken
here uses current presence data and future climate projections to project likely future
distributions. However, there are many other factors that affect species distributions.
The species may also spread to novel climates or adapt in novel climates; something that is
not possible to project using current modeling techniques. This is a limitation of the
modeling approach used in this research.

In conclusion, our distribution maps will support the expansion of date palm
production into areas projected to become unsuitable or marginally suitable for
Dubas bug.
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