MITOGENOME ANNOUNCEMENT

OPEN ACCESS

Taylor & Francis

Taylor & Francis Group

The complete mitochondrial genome sequence of the corn planthopper, *Peregrinus maidis* (Hemiptera: Fulgoroidea)

Yi-Xin Huang and Dao-Zheng Qin 🝺

Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China

ABSTRACT

In this study, we analyzed the complete mitochondrial genome sequence of the corn planthopper, *Peregrinus maidis*. The complete mitogenome sequence of *P. maidis* was observed to be a circular molecule 16,279 bp long and consisting of 13 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes (GenBank accession no. MG049917). The nucleotide composition is biased toward adenine and thymine (77.8% A + T). The A + T-rich region was found between *rrnS* and *trnl*, and this entire region was 1596 bp long.

ARTICLE HISTORY

Received 7 October 2017 Accepted 26 October 2017

KEYWORDS Delphacidae; mtDNA; phylogenetic relationship

The corn planthopper, *Peregrinus maidis* (Ashmead 1890) is a widely distributed destructive insect that causes significant yield losses not only by feeding on vascular tissues via piercing-sucking mouthparts, but also by transmitting viruses between crops (Lastra and Esparza 1976; Nault and Ammar 1989; Yao et al. 2013). Despite its economic importance, the mitogenome sequence of *P. maidis* so far remained unknown. Therefore, we sequenced the complete mitochondrial DNA genome of *P. maidis* to provide more comprehensive data for this species and also for its relationship within the family Delphacidae.

Adult *P. maidis* males were collected from a maize field in Xiashi Town (N 22°07'17.39" and E 106°54'0.89"), Guangxi, China, in August 2014. Voucher specimens were deposited in the Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, Northwest A&F University (NWAFU). The complete mitochondrial genome of *P. maidis* was determined by using next-generation sequencing (NGS).

The *P. maidis* mitochondrial genome is 16,279 bp (Genbank accession no. MG049917) in length with a total A + T content of 77.8% that is heavily biased toward the A and T nucleotides. It encodes the complete set of 37 genes which are usually found in animal mitogenomes. The gene arrangement in the mitochondrial genome of *P. maidis* is conserved, similar to other mitogenomes in Delphacidae, with the exception of *Nilaparvata lugens* (Zhang et al. 2013). In the mitogenome of *P. maidis*, a total of 19 bp overlaps

have been found at nine gene junctions (*trnQ* and *trnM* share a nucleotide; *nad2* and *trnC* share two nucleotides; *atp8* and *atp6* share four nucleotides; *trnR* and *trnN*, *trnN* and *trnS*₁, *trnS*₁ and *trnE*, *trnE* and *trnF* share one nucleotide; *nad4* and *nad4L* share seven nucleotides; and *cytb* and *trnS*₂ share one nucleotide). The mitogenome is loose and has a total of 488 bp intergenic sequences without the putative A + T-rich region. The intergenic sequences are at 15 locations ranging from 1 to 338 bp, with the longest one located between *trnP* and *nad6*. The A + T-rich region of the *P. maidis* is 1596 bp long and located between the *rrnS* and *trnI* genes. The A + T content of this region is 86.2%.

All 22 tRNA genes usually found in the mitogenomes of insects are present in *P. maidis*. The nucleotide length of tRNA genes ranges from 55 bp (*trnH*) to 71 bp (*trnK*), and A + T content ranges from 70.4% (*trnK*) to 89.3% (*trnS*₂). These two rRNA genes have been identified on the N-strand in the *P. maidis* mitogenome.

We analyzed the nucleotide sequences of 13 PCGs using the maximum likelihood (ML) method to understand the phylogenetic relationship of *P. maidis* with other fulgoroids. The mitogenome sequence of *Hyalessa maculaticollis* (GenBank accession no. JQ910987) was used as outgroup. The result shows that *P. maidis* belongs to the superfamily Fulgoroidea and is clustered into a branch of Delphacidae (Figure 1). The family Delphacidae is monophyletic and *P. maidis* is supported as the sister group to the remaining delphacids.

CONTACT Dao-Zheng Qin 🧟 qindaozh0426@aliyun.com 💿 Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

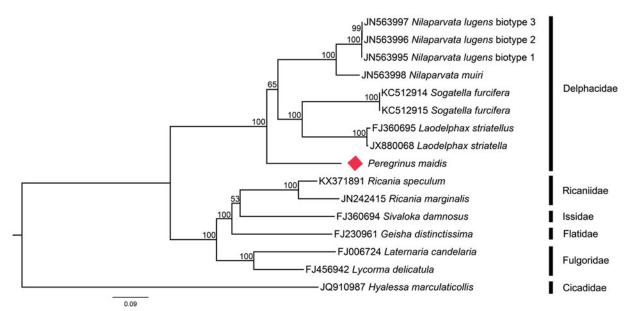


Figure 1. The maximum-likelihood (ML) phylogenetic tree of *P. maidis* and other fulgorids. The numbers beside the nodes are percentages of 1000 bootstrap values. Alphanumeric terms indicate the GenBank accession numbers.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 31672340 and 31172126).

ORCID

Dao-Zheng Qin (D) http://orcid.org/0000-0001-8219-6753

References

- Ashmead WH. 1890. The corn delphacid, *Delphax maidis*. Psyche. 5:321–324.
- Lastra JR, Esparza J. 1976. Multiplication of Vesicular stomatitis virus in the leafhopper *Peregrinus maidis* (Ashm.), a vector of a plant rhabdovirus. J Gen Virol. 32:139–142.
- Nault LR, Ammar ED. 1989. Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol. 34:503–529.
- Yao J, Rotenberg D, Afsharifar A, Barandoc-Alviar K, Whitfield AE. 2013. Development of RNAi methods for *Peregrinus maidis*, the corn planthopper. PLoS One. 8:e70243.
- Zhang KJ, Zhu WC, Rong X, Zhang YK, Ding XL, Liu J, Chen DS, Du Y, Hong XY. 2013. The complete mitochondrial genomes of two rice planthoppers, *Nilaparvata lugens* and *Laodelphax striatellus*: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. BMC Genomics. 14:417.