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Identification of reference genes and expression analysis of
heat shock protein genes in the brown planthopper,
Nilaparvata lugens ( Hemiptera. Delphacidae) ,

after exposure to heat stress
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(Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pest,
Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

Abstract: [ Aim] The brown planthopper, Nilaparvata lugens (Stil) ( Hemiptera: Delphacidae) , is a
serious rice pest in China and Southeast Asia. The occurrence and migration of N. lugens is thought to be
related to temperature. This study was conducted to understand the expression patterns of heat shock
protein genes (hsps) in the adaptation to temperature stress in N. lugens. [ Methods] Female and male
N. lugens adults were exposed to high temperature (30°C =40°C) for 1 h and 2 h, respectively. Real-
time PCR was used to detect the expression of B-actinl , B-actin2, B-actin3, 28S rRNA, 18S rRNA and
a-2-tubluin in their bodies. The most stable candidate reference gene was identified using geNorm and
BestKeeper software. The expression levels of hsp70 and hsp90 genes in the treated N. lugens adults were
measured using RT-qPCR. [ Results] The most stable reference gene in both female and male adults of
N. lugens after exposure to heat stress was B-actinl. The expression levels of hsp70 after heat stress
ranging from 30°C to 40°C in both female and male adults were not significantly different compared with
those in the control group. The expression level of hsp90 displayed significant up-regulation and reached
the highest levels in female adults and male adults exposed to 40°C and 38°C for 2 h, respectively.
[ Conclusions] B-actinl can be used as the reference gene for normalization of gene expression under high
temperature stress in N. lugens adults. The expression of hsp90 is induced by heat shock and the over-
expression of hsp90 might be involved in the enhancement of thermal tolerance in N. lugens adults.
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1 INTRODUCTION

Insects have a weak capability of maintaining
and regulating body temperature. Temperature is one
of the most important factors for the survival,
development, distribution and migration in many
insect species. When the environmental temperature
is too high or too cold, the life of insects may be
affected, and their possibly
suppressed or even death occurred ( Hoffmann,
1985; Asin and Pons, 2001). During the process of
evolution, insects have developed abilities to endure

development  was

various stresses from artificial and natural habitat
change including pesticides, extreme temperatures
and the invasion of pathogenic bacteria.

Heat shock proteins ( Hsps) exist in prokaryotic
and eukaryotic organisms and belong to a supergene

family. Hsps are highly conserved and act mainly as
molecular chaperones, promoting the correct folding
of proteins and preventing the aggregation of other
proteins ( Feder and Hofmann, 1999; Sgrensen et
al., 2003 ; Zhao et al., 2012). Previous researches
showed that the expression of heat shock protein genes
(hsps) is important in helping organisms to endure
various stresses, especially in exireme changes in
temperature ( Howrelia et al., 2011; Sakatani et al.,
2013). In vivo experiments showed that elevated
expressions of hsps are important in the correct
refolding of stress proteins, which can improve the
heat tolerance of organism ( Heads et al., 1995;
Sgrensen and Loeschcke, 2007; Colinet et al.,
2010 ).
expressions of hsps could affect the thermotolerance
of cells ( Riabowol et al., 1988).

The brown planthopper, Nilaparvata lugens
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(Stal) (Hemiptera: Delphacidae) , is a serious rice
pest that frequently causes significant financial loss
in China. It is a migratory insect that is mainly
distributed in the tropics and subtropics of Asia.
Temperature is one of the most primary factors
affecting the reproduction, migratory flight and
growth and development of N. lugens.
studies demonstrated that the development, spawning

Previous

and longevity of N. lugens adults increased with the
increase of temperature ( Ma et al., 1998; Dai,
2002 ; Long, 2010; Piyaphongkul et al., 2012). In
addition, previous studies also showed that heat stress
affected the population dynamics (Zhu et al., 1994;
Sujithra and Chander, 2013 ), vitellogenesis ( Yi,
2003) and activities of various protective enzymes in
N. lugens (Feng et al., 2001). Few researches at the
molecular level have been done for understanding the
heat stress mechanisms in N. lugens.

In order to understand the function of Asp in the
heat tolerance process of N. lugens, in this study,
female and male adults were exposed to different high
temperatures (30°C, 32°C, 34°C, 36°C, 38°C and
40°C ) for 1 h and 2 h, respectively. The most stable
reference gene was identified,
expression levels of hsp70 and hsp90 were measured.
Our main aim was to contribute a preliminary

and the relative

understanding on the thermostability of V. lugens,
which may be
management (IPM).

2 MATERIALS AND METHODS

2.1 Insects
N. lugens was collected from Nanning, Guangxi
Province, China, and was continuously reared for

applicable for integrated pest

several generations on TNI1 rice plants in the
laboratory at 25 + 1°C and 70% =+ 5% relative
humidity (RH) with a 14L: 10D light cycle. Only
healthy individuals were kept in the laboratory
population.
2.2 Heat shock

Forty 3 — 5-day-old female and male adults on
rice plants were captured in a glass tube (47 mm in

diameter, and 220 mm in height ), which was
subsequently sealed with gauze. Then, the glass tube
was exposed to a series of treatment temperatures
(30C, 32C, 34°C, 36°C, 38°C and 40°C ) for 1 h
and 2 h in a light incubator, allowing to recover at
25°%C for 1 h. After treatment, the total RNA from 20
survivors was extracted and stored in liquid nitrogen.
Untreated adults were used as a negative control.
Each treatment was repeated three times.
2.3 RNA extraction and synthesis of cDNA

Total RNA was extracted using a Trizol Kit
(Invitrogen, USA). The amount and quality of the
extracted RNA was estimated using a nanoDrop-1000
( Thermo, USA) UV-Vis spectrophotometer. One
microgram of total RNA was used as the template for
the first strand cDNA synthesis using a PrimeScript™
RT Reagent Kit with gDNA Eraser ( TaKaRa,
Dalin). All operations were performed according to
the manufacturer’ s directions.
2.4 Real-time quantitative PCR

Six candidate reference gene sequences and two
hsps gene sequences from N. lugens were
downloaded from GenBank (http://www. ncbi. nlm.
nih. gov/) , Primer 5.0 was used to design primers
(Table 1). Primer specificity was determined by
single peak melting curve using Real-time
quantitative PCR ( RT-qPCR ). The amplification
length was detected by running 1. 5% agarose/EtBr
gel. A 25 pL reaction mixture, including 12.5 L 2
x SYBR® Premix Ex Taq IT ( Tli RNaseH Plus)
(TaKaRa, Dalian), 2.5 pL first-strand ¢cDNA and
0.4 pmol/L each of the primers, was used for RT-
qPCR. The reactions were performed under the
following conditions: pre-heat at 95°C for 30 s,
followed by 40 cycles of 95°C for 10 s, and 60°C for
30 s. After the reaction, the melting curves were
analyzed from 55C to 95°C. In addition, the
standard curves were constructed to determinate the
PCR efficiency that would be a parameter in
quantification data analysis. All reactions were
carried out using the Chromo 4 Real-Time PCR
Detection System (Bio-Rad, USA).

Table 1 Primer sequences used for real time quantitative PCR

GenBank . Fragment PCR Correlation
. Primer sequence .. .

Gene accession (F/R) length efficiency coefficient
number (bp) (% ) (R*)
B-actinl EU179846 TGTCTCTCACACAGTCCCCATCT/GTCAAGTCACGACCAGCCAAG 80 98.11 0.998
B-actin2 EU179849 AGTCGCACCCGAAGAG/AGCCTGGATAGCAACATA 130 93.20 0.998
B-actin3 EU179850 TGCTGATGGTGGGTATGGG/ATGGCAGGTGAAGCGAAG 270 108.20 0.994
18S rRNA JE773148 ACCAGGTCCAGACACAATG/CACTCCACCAACTAAGAACG 92 103. 80 0.992
28S rRNA JX556804 ATCAGCGGGGAAAGAAGA/ATCCGAGTAAGTAAGGAAACGA 154 95.10 0.999
a-2-tubulin FJ810204 GGGCTTCCTCATCTTCC/AACGGCTGTTGATACCTG 145 94.90 0.994
hsp70 JQ782193 AAGTCAGGTGGCTATG/CTTTGTGCCGAGGTA 247 108. 50 0.991
hsp90 GU723300 TGTGAACAACCTGGGAAC/GGACCGTAAACGAACCTC 209 103.70 0.997




534

JIANG Jian-Jun et al.: Identification of reference genes and expression analysis of hsps in Nilaparvaia lugens

481

2.5 Data analysis

The geNorm ( Vandesompele et al., 2002 )
[ http://medgen. ugent. be/ ~ jvdesomp/genorm/ |
applet for Microsoft Excel, which determines the
most stable reference gene from a set of candidate
genes in a given cDNA sample panel and the
BestKeeper excel-based tool, was used to determine
the stability of reference genes ( Pfaffl et al., 2004 )
[ http: //www. wzw. tum. de/gene-quantification/
bestkeeper. html |. In addition, the geNorm software
also gives an option that can determine the optimal
number of reference genes according to the pairwise
variation V /V

n+1

=0. 15 as a cut-off value, below
which inclusion of an additional reference gene is not
required. The two softwares were employed to
determine the most stable reference gene in different
treatments of N. lugens.

PCR efficiency ( £) was calculated for each
pair of primers based on the slope of the standard
curve from a 10-fold dilution serial of the first strand
c¢DNA using the Opticon Monitor 3 software for
Chromo 4 ( Bio-Rad, http://www. bio-rad. com/).
PCR efficiencies ( E) were calculated according to
the formula E =10 """ — 1.

The relative quantities of hsp70 and hsp90 were
calculated using the 2 **“" method described by
Livak and Schmittgen (2001 ). The statistical
analysis was performed using SPSS 19. 0 software.
To correct for plate variation, the expression levels of
hsp70 and hsp90 in the control (25°C) were

quantified in each plate.

3 RESULTS

3.1 RT-qPCR of candidate reference genes in
N. lugens adults

The expression levels of six candidate reference
genes including B-actinl , B-actin2, B-actin3, 28S
rRNA, 18S rRNA and «-2-tubulin were detected in

male and female adults of N. lugens subjected to
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Fig. 1

heat stress at different temperature. The cycle
threshold (Ct) ranged from 10. 13 (28S rRNA) to
32.55 (B-actin3). The Ct value between replicates
was less than 0. 5. Standard curves of each pair of
primers exhibited correlation coefficients ( R*)
higher than 0. 99 and PCR efficiencies were very
good, ranging from the lowest 93.2% (B-actin2) to
the highest 108. 2% ( B-actin3) (Table 1). The
melting curve of all genes with a single peak and
agarose/EtBr gel analyses showed a single band for
all PCR products ( data not shown) , indicating that
the primers are target-specific.
3.2 Expression stability of reference genes in
N. lugens adults

geNorm was the gene
expression stability by measuring the M value in all
The lowest M value
indicates the highest stability in expression of hsps in
all test samples. In this study, the rank of the
candidate reference genes for females based on their
average M values was as follows, B-actin2 (M =
0.933) > 18S rRNA (M =0.800) > a-2-tubulin >
(M =0.731) >28S rRNA (M =0.655) >B-actinl =
B-actin3 (M =0.571), and the pairing of B-actinl +
B-actin3 with the lowest M value were supposed to be
the most stable reference genes in females (Fig. 1:

used to calculate

candidate reference genes.

A). In males the rank of the average M values are 3-
actin2 (M =0.542) >18S rRNA (M =0.460) >28S
rRNA (M =0.413) > a-2-tubulin (M =0.371) > B-
actinl =B-actin3 (M =0.276) (Fig.1: B), and the
pairing of B-actinl + B-actin3 with the lowest M value
displayed the highest stability (Fig. 1: B). In this
experiment, the V,/V | values were calculated (Fig.
2). The V,/V, value was 0. 132 in females and the
This indicated
that the normalization factor should contain two
reference genes in females, but in males, increasing
the number of reference genes could not reduce the
pairwise variation value below 0. 15.

minimum value was 0. 160 in males.
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Determination of the most stable reference gene in female (A) and male (B) adults of

Nilaparvata lugens under heat stress using the geNorm software
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Fig. 2 Determination of the optimal number of reference genes in female (A) and male (B)

adults of Nilaparvata lugens under heat stress using the geNorm software

also used to
determine the most stable reference genes in different
treatment samples. According to the standard
deviation of CP [ SD + CP] and the standard
deviation of the absolute regulation coefficient SD
[ £ x-fold | values, the most stable reference gene
was determined, which has

BesterKeeper software was

the lowest values

suggesting that the gene expression level is the most
stable.
candidate reference genes are shown in Table 2. The
results suggested that B-actinl had the greatest
stability both in female and male adults of N.
lugens.

Data from the BestKeeper analysis for

Table 2 Stability analysis of the candidate reference genes in Nilaparvata lugens adults after exposure to
high temperatures using BestKeeper software

Female Male
Factor B-actinl  B-actin2  B-actin3 185 283 a-2-tubultin ~ B-actinl  B-actin2  B-actin3 185 283 a-2-tubulin
rRNA  rRNA rRNA  rRNA
N 13 13 13 13 13 13 13 13 13 13 13 13
geo Mean [ CP] 15.67 19.85 31.31 16.28 11.15 18.26 15.28 20.76  30.66 17.08 11.34 19.32
ar Mean [ CP] 15.67 19.88 31.31 16.29 11.17 18.27 15.29 20.80 30.67 17.09 11.36 19.34
min [ CP] 15.15 18.72  30.49 15.59 10.13 17.72 14.77  18.87 29.63 16.31 10.52 18.40
max [ CP] 16.74  21.90 32.39 17.45 12.46 19.02 16.22  22.77 32.55 18.29 12.53 20.35
Std dev [+ CP] +0.39 £0.88 £0.55 +0.45 +0.59 +0.44 +0.29 +1.24 £0.62 +0.37 =+0.63 +0.61
CV [% CP] 2.46 4.45 1.77 2.75 5.29 2.43 1.91 5.94 2.02 2.15 5.59 3.16
min [ x-fold ] -1.43 -2.19 -1.76 -1.62 -2.04 —-1.45 -1.42 -3.70 -2.04 -1.70 -1.77 -1.90
max [ x-fold ] 2.11 4.13 2.12 2.25 2.47 1.69 1.91 4.04 3.71 2.30 2.28 2.04
Std dev [+x-fold]  +£1.31 +1.85 +1.47 =+1.36 =+1.51 +1.36 +1.22 £2.35 =+1.54 +1.29 =+1.55 +£1.53
Stability ranking 1 5 3 2 4 2 1 6 5 2 4 3

3.3 Expression of hsp70 and hsp90 in N. lugens
adults after heat shock

The expression level of B-actinl was stable
under heat stress at different temperatures in N.
lugens adults, indicating that B-actinl can be used as
a suitable reference gene in RT-qPCR. The relative
gene expression levels of hsp70 and hsp90 in N.
lugens adults after exposure to heat shock were
analyzed with RT-qPCR ( Fig. 3). In females, the
relative expression level of hsp70 (Fig. 3. A) was
the highest at 32°C for 2 h (1.47-fold as high as that
in the control) and the lowest at 36°C for 1 h (0. 95-
fold as high as that in the control). In males, the
highest relative expression level of hsp70 ( Fig. 3.
B) was the highest at 34°C for 2 h (1. 75-fold as

high as that in the control) and the lowest was at

32°C for 1 h (1. 02-fold as high as that in the
control ). Under all heat stress condition, the
relative of hsp70
significantly both in females and males.

expression levels increased

The relative expression level of hsp90 showed
different patterns in response to heat shock. In
females the relative expression levels (Fig. 4; A)
increased following temperature and time increase.
The relative expression level of hsp90 in females at
40°C (3. 13-fold for 1 h and 5. 42-fold for 2 h),
38°C (3.89-fold for 1 h and 4.01-fold for 2 h ) and
36°C (3. 74-fold for 2 h) were significantly different
compared with the control. Males and females had
similar expression pattern, and the expression levels
of hsp90 at 40°C (6. 84-fold for 1 h and 7. 59-fold for
2 h), 38°C (6.59-fold for 1 h and 7. 79-fold for 2
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h), 36°C (2.68-fold for 2 h and 4. 20-fold for 2 h)
and 34°C (2.78-fold for 1 h and 4.47-fold for 2 h)

1.8
1.61
1.41 a
1.2
1.01
0.8
0.61
0.41
0.21

aa

Relative expression level

25 30 32 34 36 38 40
Temperature (°C)

were also significantly different from the control

(Fig. 4. B).

2.5

2.0

Relative expression level

25 30 32 34 36 38 40

Temperature (°C)

Fig. 3 Relative expression levels of hsp70 in female (A) and male (B) adults of

Nilaparvata lugens after exposure to heat stress
Adults were exposed to high temperatures at 30°C , 32°C, 34°C, 36°C, 38°C and 40°C, for 1 h or 2 h, respectively, and then transferred to 25°C for

recovery 1 h. The control group remained at 25°C. Data in the figure represent mean = SE of three replicates, and different letters above bars indicate

significant difference at the 0.05 level (Tukey’s test). Relative expression quantity of genes was calculated using the 2 ~2A°T method. The same for Fig. 4.
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Fig. 4 Relative expression levels of hsp90 in female (A) and male (B) adults of Nilaparvata lugens after exposure to heat stress

4 DISCUSSION

Studies on gene expression pattern in different
samples and tissues contribute to the understanding
of the function of genes that are relevant to complex
biological processes, such as the processes of
immune, disease, development and heat adaptation
( Vandesompele et al., 2002; Lii and Wan, 2008 ;
Tao et al., 2013). RT-qPCR is an important method
to investigate gene expression ( Pfaffl, 2001 ) and
has been widely used in functional gene studies.
Internal control genes are required to normalize the
gene expression in different experimental conditions
and tissues. Internal control refers to a reference or
which should have stable

tissues and during the
experimental treatment. Therefore, it is important to

housekeeping gene,
expression level in
detect the relative expression level of potential
reference genes with RT-qPCR and evaluate the

stability of reference genes.
In this study,
reference genes from N. lugens adults subjected to

we evaluated six candidate
heat shock using geNorm and Bestkeeper softwares.
Data from both softwares suggested that B-actinl was
the most stable reference gene in females and males.
This conclusion is similar to an earlier study, which
indicated that B-actinl was a stable reference gene
under different treatment conditions ( Jiang et al.,
2010). The results analyzed by the two sofiwares
also showed that a-2-tubulin was more stable genes
with a ranked two in females and three in males.
Although 18S rRNA and 28S rRNA were highly
expressed, the M value of 18S rRNA is one of the
largest in females and males and the SD[ + CP] and
SD[ #+x-fold] values of 28S rRNA also were one of
the largest in all samples, suggesting that 18S rRNA
and 28S rRNA are not suitable as a reference gene
under our experimental condition. This is consistent
with earlier studies that suggested that rRNA was not
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appropriate to be used as reference genes ( Jiang et
al., 2010; Shen et al., 2010). In addition, data
from the geNorm software suggested that the optimal
combination of reference genes was B-actin 1 + -
actin3 in females and males. B-actin3 had the Ct
values from the lowest 29. 36 to the highest 32.55 in
all samples, with low expression abundance, and the
degree of variation of the Ct values was high. For
this reason, we do not consider B-actin3 as a suitable
reference gene. B-actin2 has the highest M value,
SD [ £CP] and SD [ # x-fold] values, indicating
that B-actin2 was a less stable gene. In conclusion,
the present study suggested that B-actinl was the
most suitable reference gene in all test samples. If
two genes are required as the internal control, we
propose the combination of B-actinl + a-2-tubulin.
The over-expression of hsp genes in enhancing
thermotolerance of insects have been detected in
early studies ( Gehring and Wehner, 1995 ; Sgrensen
et al., 2003; Yin et al., 2006; Huang and Kang,
2007; Liu et al., 2013 ). However, the earlier
studies were often limited to model insects, few crop
pests were studied. The relationship of the over-
expression of hsps with temperature in many insects
is poorly understood. The over-expression of hsp70
and hsp90 genes during heat stress was detected in
some insects ( Sonoda et al., 2006; Bettencourt et
al., 2008 ; Kalosaka et al., 2009; Bernabo et al.,
2011). In this paper we have shown the expression
patterns of hsp70 and hsp90 in adults of N. lugens
after exposure to heat over time. Our results
indicated that the expression levels of hsp70 ranging
from 30°C to 40°C in both female and male adults of
N. lugens were not significantly different compared
with the control , but the expression levels of hsp90 at
higher temperatures were significantly different from
the control. The HSP70 family contains two groups,
HSP70 and heat shock cognate 70 ( HSC70). It is
generally recognized that the relative expression level
of HSP70 is low under normal conditions but is over-
expressed under various stresses and HSC70 has
stable expression in normal conditions and is not
induced by stress (Kim et al., 2008). In this study,
hsp70 was not over-expressed under heat stress in V.
lugens. Ge et al. (2013) showed that when exposed
to sub-lethal
insecticide, the thermotolerance of N.

triazophos
lugens was
enhanced, and the hsp70 transcripts both in the
third-instar nymphs and brachypterous adult females
RNAi
demonstrated that hsp70 gene are essential for
survival and tzp-increased thermotolerance. These
results suggested that the expression pattern of hsp70

concentrations of the

were  up-regulated, silencing  also

in N. lugens was correlated with an inducing factor.
The expression of hsps can be induced by bisphenol
A, cold hardening, insecticides and ecdysone
(Huang et al., 2009; Shashikumar and Rajini,
2010; Wang et al., 2011; Michail et al., 2012),
but the functional connection between
tolerance and heat shock protein regulation needs
further investigation.

thermal

Here, the expression of hsp90 gene in the
treated female and male adults of N. lugens was up-
regulated during heat shock. In insects, hsp90 is
usually induced by heat stress in the range of 35%C to
40°C (Kim et al., 2008). Our study showed that the
expression of hsp90 in N. lugens adults was induced
significantly by high temperature from 36°C and
34°C in females and males, respectively. This result
was consistent with the earlier studies. It was
confirmed that heat shock induced up-regulated
expression of hsp90 in N. [ugens adults and as a
consequence enhanced their tolerance to heat.

The heat shock protein gene family includes
hsp100, hsp90, hsp70, hsp60, hspd0 and small
hsps. In this study, hsp70 and hsp90 expression
patterns after heat stress in N. lugens adults were
shown; however, the expression patterns of hsp100,
hsp60 and small hsps were unclear. Cloning and
characterization of hsps from N. lugens are needed to
further understand the heat adaptation mechanism.

In summary, our results showed that the best
stable reference gene was B-actinl in N. lugens
adults after exposure to high temperatures. High
temperature did not change the expression levels of
hsp70, but induced the up-regulation of hsp90
expression. These results will help us to understand
the mechanism of thermal tolerance, and supply
basic information for crop pest forecasting.
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