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Abstract

BACKGROUND: Rice brown planthopper, Nilaparvata lugens Stål, is a primary insect pest of cultivated rice, and
effective control is essential for economical crop production. Resistance to neonicotinoid insecticides, in particular
imidacloprid, has been reported as an increasing constraint in recent years. In order to investigate the extent of
resistance, 24 samples of N. lugens were collected from China, India, Indonesia, Malaysia, Thailand and Vietnam
during 2005 and 2006. Their responses to two diagnostic doses of imidacloprid (corresponding approximately to
the LC95 and 5 × LC95 of a susceptible strain) were examined.

RESULTS: Ten of the 12 samples collected during 2005 were found to be susceptible to imidacloprid, but two
late-season samples from India showed reduced mortality at both diagnostic doses. All 13 strains collected in 2006
showed reduced mortality at both doses when compared with the susceptible strain. Dose–response lines showed
resistance in one of the most resistant field strains to be approximately 100-fold compared with the susceptible
standard.

CONCLUSION: The data demonstrate the development and spread of neonicotinoid resistance in N. lugens in
Asia and support reports of reduced field efficacy of imidacloprid.
 2008 Society of Chemical Industry
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1 INTRODUCTION
The rice brown planthopper, Nilaparvata lugens Stål
(Hemiptera: Delphacidae), is an important pest of
rice crops throughout Asia.1,2 It is a frequent target
of insecticide applications aimed at reducing the
severity of infestations. Nilaparvata lugens is a phloem
feeder extracting nourishment directly from the plant.
This induces complex plant responses, with direct
and indirect deleterious effects including reduction
in plant growth (root development, plant height and
reproduction), wilting and leaf chlorosis.3–6 All of
these contribute to potentially dramatic losses in yield
and can ultimately lead to plant death. Symptoms are
collectively known as ‘hopperburn’, a non-contagious
disease also caused by other planthoppers and
leafhoppers including the sometimes coexisting white-
backed planthopper, Sogatella furcifera (Horváth). It
has been estimated that rice consumption accounts for
20% of the world’s calorific intake,7 and single-season
losses due to N. lugens during 1990/1991 in Thailand
and Vietnam were calculated at $US 30 million.8

Broad-spectrum insecticides used to control
N. lugens over several decades were eventually com-
promised by insecticide resistance.9,10 They were

superseded by more selective chemistries including
the neonicotinoid compound imidacloprid. Imida-
cloprid has since become one of the most common
insecticides used against N. lugens, principally owing
to its efficacy against previously resistant populations.
Recently, however, reports of reduced efficacy have
become more frequent and generally attributed to
resistance development.11,12 A reversion to more
broad-spectrum chemistries is now of concern, as
integrated pest management (IPM) strategies for
rice that combine non-chemical approaches with
complementary insecticide use would be severely
compromised. Planthoppers, like other Hemipteran
groups such as whiteflies and aphids, have a propensity
for developing multiple insecticide resistance. N.
lugens is no exception in this respect, but has the
additional characteristic of being highly migratory.13,14

Its annual cycle of long-distance migration is of great
significance to both the spread of resistant genotypes
and the transmission of viruses.15 This study aimed
to assess the potency and geographical distribution of
imidacloprid resistance in N. lugens strains collected
in 2005 and 2006 from six countries in Asia.
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2 MATERIALS AND METHODS
2.1 Insect strains
Baseline susceptibility data were generated using a
laboratory-maintained strain (S) of N. lugens provided
by Bayer CropScience (Monheim, Germany). Bayer
CropScience also organised the transfer to Rotham-
sted Research of 11 field strains collected in 2005 and
a further 13 in 2006 from China, India, Indone-
sia, Malaysia, Thailand and Vietnam. All strains
were reared in the laboratory on whole rice plants
(Oryza sativa L. ssp. Japonica var. Nipponbare) under
controlled environmental conditions (26 ◦C/16 h pho-
toperiod).

2.2 Bioassays
Adult macropterous (long-winged) female N. lugens
of less than 10 days old were used for topical
application bioassays. These consisted of three
replicates per dose, each with 10–20 individuals.
Diagnostic doses represented the LC95 (4 mg L−1)
and 5 × LC95 (20 mg L−1) of the susceptible strain.
Insects for testing were removed from rearing cages,
lightly anaesthetised using carbon dioxide and dosed
with 0.25 µL of technical imidacloprid dissolved
in acetone (AR grade) on the pronotum using a
microapplicator (Burkard Manufacturing Ltd, UK).
Control insects were dosed with 0.25 µL acetone only.
Treated individuals were transferred to ventilated
plastic pots containing untreated, rooted rice stems
and maintained under controlled environmental
conditions (26 ◦C/16 h photoperiod). Mortality was
assessed 48 h post-treatment.

2.3 Data analysis
When appropriate, bioassay data were subjected to
probit analysis using Polo Plus software (LeOra Soft-
ware, Berkeley, California). This generated estimated
LC50 values, and resistance ratios were calculated
by dividing the LC50 of a field strain by that of
the susceptible strain. Standard errors for mortali-
ties at diagnostic concentrations were calculated using
a binomial model.

3 RESULTS
Responses of 2005 samples of N. lugens to imidacloprid
showed variation, particularly at the lower dose
tested (Table 1). Strains 1, 4, 6 and 10 (originating
from China, India or Malaysia) gave approximately
55–60% mortality at 4 mg L−1. Two late-season
samples from India (strains 7 and 8) gave the
lowest mortalities (18 and 19%) at this dose and
additionally showed approximately 20–30% survival
at the higher dose of 20 mg L−1. All other strains
responded similarly to the susceptible strain at both
doses.

In contrast, all 13 samples collected in 2006
showed reduced susceptibility to imidacloprid at both
diagnostic doses (Table 1). Responses at 4 mg L−1

ranged from 0 to 58% mortality, and those at 20 mg

Table 1. Mortalities (%) (± standard error)a for all Nilaparvata lugens

strains at two diagnostic doses (LC95 and 5 × LC95 of susceptible

strain) of imidacloprid topically applied to adult females

Strain Year Origin 4 mg L−1 (±SE) 20 mg L−1 (±SE)

S – – 91.43 (±4.48) 100.00 ± nc

1 2005 China 53.45 (±6.39) 100.00 ± nc
2 2005 India 85.21 (±4.74) 100.00 ± nc
3 2005 India 91.23 (±3.68) 100.00 ± nc
4 2005 India 59.32 (±6.09) 100.00 ± nc
5 2005 India 83.34 (±5.02) 100.00 ± nc
6 2005 India 59.66 (±7.57) 100.00 ± nc
7 2005 India 17.98 (±4.66) 81.50 (±4.74)
8 2005 India 18.63 (±4.79) 71.40 (±5.61)
9 2005 Indonesia 96.36 (±2.50) 100.00 ± nc

10 2005 Malaysia 54.03 (±6.91) nt
11 2005 Thailand 87.01 (±4.20) 100.00 ± nc

12 2006 China 41.41 (±7.11) 46.20 (±10.4)
13 2006 China 23.34 (±6.24) 75.81 (±6.69)
14 2006 China 55.71 (±6.64) 75.11 (±6.92)
15 2006 China 35.00 (±6.88) 67.50 (±6.76)
16 2006 India 57.53 (±8.13) 97.14 (±2.36)
17 2006 India 50.00 (±7.45) 79.71 (±5.15)
18 2006 India 33.67 (±6.68) 48.04 (±5.97)
19 2006 India 0.00 ± nc 5.75 (±4.18)
20 2006 Malaysia 13.87 (±6.78) 33.07 (±5.23)
21 2006 Thailand 22.41 (±7.74) 35.71 (±8.10)
22 2006 Thailand 35.00 (±6.88) 67.50 (±6.76)
23 2006 Vietnam 2.27 (±2.52) 0.00 ± nc
24 2006 Vietnam 26.63 (±7.70) 42.11 (±7.81)

a nt = not tested; nc = not calculable.
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Figure 1. Dose–response data for the Nilaparvata lugens laboratory
susceptible (S) and imidacloprid-resistant (19) strains against
imidacloprid topically applied to adult females.

L−1 from 0 to 97% mortality. The highest rates of
survival occurred in strains 19 and 23, the former
being a late-season sample from India, and the latter
a mid-season sample from Vietnam. Little or no
mortality was observed in these strains even at the
higher dose of 20 mg L−1. A comparison between
dose–response data for the laboratory susceptible
strain (S) and strain 19 showed near-parallel response
lines (Fig. 1) with a resistance ratio of 95 at LC50

(Table 2).
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Table 2. Comparison between dose–response data for Nilaparvata

lugens laboratory susceptible (S) and imidacloprid-resistant (19)

strains against imidacloprid topically applied to adult females

Strain n LC50 (95% CL) Slope (±SE) RRa (95% CL)

S 367 0.61 (0.5–0.8) 1.8 (±0.26) 1
19 121 58 (31–92) 2.7 (±0.65) 95 (56–170)

a RR = resistance ratio (R/S).

4 DISCUSSION
In accordance with reports from growers, it appears
that the low-level and localised imidacloprid resis-
tance observed in strains of N. lugens collected in 2005
increased substantially in potency and geographical
distribution by 2006. The four most resistant 2006
samples came from different countries (China, India,
Malaysia and Vietnam), implying that resistance was
not confined to a specific geographical region. This dis-
tribution is consistent with the migratory behaviour of
N. lugens, and poses a serious threat to the sustainable
use of imidacloprid and other compounds compro-
mised by cross-resistance in this species. Further
information on the spread of resistance to imidaclo-
prid in south-east Asian populations of N. lugens is
given in an accompanying paper in this In Focus
group.16

Cross-resistance within the neonicotinoid class has
not yet been investigated in detail for N. lugens,
but in other neonicotinoid-resistant species it is
known to extend across the majority of compounds,
albeit to varying extents.17–19 Research on N. lugens
provided the first confirmed example of target-
site resistance to neonicotinoids.20 However, this
involved a laboratory-selected strain that may not be
representative of insects selected in the field. In the
tobacco whitefly (Bemisia tabaci Gennadius) and the
fruit fly (Drosophila melanogaster Meigen), increased
detoxification of neonicotinoids by cytochrome-
P450-dependent monooxygenases has been linked
with neonicotinoid resistance.17,21,22 Thus, both
major types of resistance mechanism have been
documented for neonicotinoids and require investi-
gation for their occurrence in field strains of
N. lugens.

In terms of resistance management, it now
seems essential to reduce reliance on imidaclo-
prid in favour of other compounds with differ-
ent modes of action. Unfortunately, the supply
of such compounds is limited and, as shown
here for imidacloprid, without severe restrictions
on overall pesticide applications there is scope in
N. lugens for any form of resistance to spread
rapidly.
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